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Abstract

Research on cooperative control of multi-agent systems has drawn increased

attention from control engineers in recent decades. Inspired by natural phe-

nomena, this research has been developed to become more practical and

reliable in implementation. Consensus is one of the most active and very

crucial research topics in cooperative control of multi-agent systems. One

of the unavoidable problems in developing consensus control for multi-agent

systems is the presence of uncertainties in the dynamic models. Adaptive

control is a research line applied to solve consensus problems for multi-agent

systems subject to uncertainties. In this thesis, we establish a distributed

adaptive consensus framework for multi-agent systems with uncertain dy-

namics.

There are two main problems in designing distributed adaptive consensus

control for general multi-agent systems. First, the adaptive law cannot al-

ways be implemented in a distributed fashion because it depends on the

gradient of a (centrally constructed) Lyapunov function. Consequently, dis-

tributed adaptive consensus can only be applied for limited cases. In this

thesis, we establish a distributed adaptive consensus framework to over-

come this problem by proposing a novel distributed adaptive scheme that

does not rely on the gradient of a Lyapunov function. An application of

our framework is presented to solve the consensus problem in second-order

multi-agent systems under a directed topology.

The second problem is the presence of nonlinearly parameterized dynamics

in multi-agent systems. It is always difficult to handle nonlinearly parame-

terized uncertainties in adaptive control. Some results have been obtained

for special cases. In addition, none of the existing results are applicable to



networked systems with nonlinearly parameterized dynamics. In this the-

sis, we develop a distributed adaptive framework for multi-agent systems

subject to nonlinearly parameterized uncertainties. The linear parameter-

ization assumption is removed by proposing a novel distributed adaptive

update law. Therefore, our scheme is more applicable to general nonlinear

multi-agent systems. A specific implementation of our framework is pre-

sented for nonlinear second-order multi-agent systems. To illustrate our

approaches, we present some numerical examples and simulations with var-

ious settings.
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Introduction

This thesis studies the distributed adaptive consensus framework for multi-agent sys-

tems (MASs) that can be implemented in many applications such as consensus of Un-

manned Aerial Vehicles (UAVs), consensus of mobile robots, synchronization of load

balancing and so on. The objective of our study is to establish some general frame-

works to maintain the cooperative motion of individual agents in MASs, where the

control protocol can be applied to both linear MASs and nonlinear MASs subject to

uncertainties.

In this chapter, we present an introduction to MASs, cooperative control of MASs

and adaptive control in the first section. Subsequently, we present the literature review

of MASs with linear and nonlinear dynamics. Then we explain the main research

outcomes of this thesis and its contributions by comparing our work with existing

research. The outline and organization of the thesis are presented in the last section.

1.1 Background and Motivation

1.1.1 Multi-Agent Systems

The collective movement of animals in a social group is an important natural phe-

nomenon. Individually, each animal has its own pattern and motion. Nevertheless, the

collective motion depicts the group as one entity with some desirable global or collec-

tive responses to external influences. The aggregate dynamics aim towards achieving

objectives such as migration, foraging and protecting the group from predators. The

1



1. INTRODUCTION

synchronized movement and responsive movement bring about a choreographic move-

ment as in a dance, yet this displayed pattern is not of a planned script, but the result

of instantaneous responses and decisions by individual members.

Figure 1.1: A group of birds flying in V-formation [1]

Figure 1.2: A school of fish [2]

A group of animals moving together allow the group to achieve what the individual

is unable to do. For example, a group of birds can migrate to a distant site by flying

in V-formation as illustrated in Fig. 1.1. In this situation, the energy required by an

individual bird to fly can be reduced by remaining in the wingtip vortex up-wash of

those ahead. Therefore, the weak and young birds can also survive the migration.

Another example is a school of fish as illustrated in Fig. 1.2. The predators have more

difficulties to catch an individual fish moving in a social group because a group of fish

2



1.1 Background and Motivation

Figure 1.3: A herd of horses [3]

can scatter and cluster quickly. To elude predators, a herd of horses (Fig. 1.3) move

together in an organized way to a distant site foraging for food. This type of behaviour

can also be seen in a group of humans in a panic and mob scenario, where there is

tremendous pressure to align with the group’s collective leader, rather than following

individual dispositions.

The flow of information has a crucial role in the movement of a group of animals,

but each individual is aware only of its neighbour’s motions. The information obtained

by the individual animals affect their own movements, which influences the movement

of the group overall. Different information flows and different species generate differ-

ent types of motions. For example, the formation flight of birds illustrated in Fig. 1.1

indicates that an individual bird is only concerned about the movement of a few neigh-

bours beside it, however, the information flow allows all the birds fly in a particular

formation. In another example, such as flocking of horses, besides the motion of a few

neighbours, the vibration of the earth may influence the motion of individual horses

that may not be even close by.

Illustrating the collective behaviour of animal groups using a computer simulation

has been a challenge for researchers in recent decades. It is impossible to script the

movement of each individual in a planned trajectory. On the other hand, analyzing a

group hinged on social behaviour is actually complex, yet, the individual in a collective

movement seems to follow simple rules that make their movement efficiently respon-

sive and practically instantaneous. The collective movement of animal groups can be

3



1. INTRODUCTION

simulated in a computer by bequeathing each individual with the same set of rules,

which allows it to respond to the situation encountered. The collective movement of

the group is the accumulated responses of the individual animals.

The collective motion of animals has drawn increased attention to the study of

animal behaviour in nature. The aggregate motion of flock birds was simulated using

computer animation in [4]. In this animation, a distributed behaviour of each bird

was analyzed, where each flying bird worked independently to keep together and avoid

collisions with its neighbour and with any object in their environment. Inspired by

biological interaction, self-ordered motion was studied in [5] by investigating phase

transition in a system of self-driven particles. Some observations and results of the

animal behaviour with the essential aspects of collective motion can be found in [6, 7].

This natural phenomenon and some preliminary results presented by researchers in

distributed computing and collective biological motion have inspired the control engi-

neers and theoreticians to develop control protocols for MASs. A MAS is comprised

of multiple interacting intelligent agents in a networked environment. Each agent has

characteristics like interactivity and autonomy. The connected agents have the capa-

bility to respond to the environment based on the information received from a network.

An individual agent is represented by some physical entity such as a satellite, a robot

manipulator, an unmanned aerial vehicle (UAV), and various other types of robots.

MAS is a broad field of research and relates to knowledge in mathematics, biology,

physics, robotics, control automation and so on. In control automation research, MASs

are used in many applications such as cooperative control of unmanned aerial vehicles

(UAVs) [8, 9, 10, 11, 12, 13, 14], cooperative control of mobile robots [15, 16, 17, 18,

19, 20, 21, 22], rendezvous and proximity operations of satellites [23] and so on.

1.1.2 Cooperative Control of MASs

Research problems in cooperative control of MASs have been widely studied in various

aspects such as flocking, synchronization/consensus, formation control, obstacle avoid-

ance, swarming and so on. The main objective of cooperative control is that the state

of every agent is required to reach a particular agreement on some physical quantities

of interest such as position, velocity, temperature, voltage, force, attitude and so on.

Flocking control is one of the research problems in control automation studying a

collective behaviour of a group of agents in a particular connected environment. The

4



1.1 Background and Motivation

mechanism in flocking is repulsive and attractive control actions. This mechanism was

described in [4, 24] as the three basic rules in flocking:(1) Flock centring, where each

agent keeps close to their nearby mates, (2) Alignment, where each agent adjusts to

match their velocity to their nearby mates, (3) Avoiding collision, where each agent

avoids collisions with the nearby mates. Some results in flocking control of MASs with

different settings can be found in [22, 24, 25, 26, 27, 28].

Consensus is another fundamental research problem in cooperative control of MASs.

The main goal in consensus is to achieve an agreement in a particular physical quan-

tity. The dynamic behaviour of each agent in consensus is represented by their state.

That is, consensus requires that the state of every agent reaches an agreement in some

particular sense. A control protocol is designed based on local information and in-

formation exchange between neighbouring agents. There are two general scenarios in

consensus: leader-following and leaderless. In the leader-following setting, the followers

are required to follow one or more leaders.

One of the applications of consensus is formation control. In formation control, ev-

ery agent is required to follow a desired configuration or formation. Generally speaking,

the displacement and distance-based measurements are commonly used for consensus-

based formation control. There are two common approaches for consensus of MASs.

The first is a centralized control approach, where control protocols for every agent are

designed by a central station based on the information of all the agents. The second

approach is distributed control. In this approach, every agent is governed by some

distributed control protocol using local information. The local control is generated for

each agent based on the relative measurements with its neighbours in the network.

Compared with the centralized control, the distributed control has several advantages

as it is more efficient, more flexible and cheaper to be applied. In this thesis, our fo-

cus is to study consensus protocols of MASs that can be implemented in a distributed

fashion.

1.1.3 Adaptive Control

One of the main issues in control automation is the presence of uncertainties in the

system dynamics due to various disturbances such as structural damage, the change of

dynamics and the change of environment in time. As a result, the system model may

5
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have uncertain dynamics, unknown and time-varying parameters that can degrade the

control performance.

The aforementioned situations are challenging for control design. A fixed gain

feedback control has some degree of robustness to handle uncertainties in the system

dynamics. The bounds of uncertainties are required to be known as prior information

in control design. The control gain is fixed and tuned to the worst case rather than to

actual physical systems. The stability is guaranteed if the uncertainties are within the

bounds.

Another approach to handling uncertainties is adaptive control. It is a control

strategy that has the ability to adjust itself to handle the changing environment un-

der unforeseen and adverse conditions. In this approach, prior information about the

bounds of uncertainties is not required. Also, the controllers are not required to be

adjusted for the worst case. The basic idea of adaptive control is parameter estimation,

which is generated by adaptation laws. The estimation parameters become inputs for

the controller to improve it. A proper adaptation law is required to be designed to

learn the changing parameters by processing the output of the systems. Therefore,

new parameter estimation and a new control gain can be used to achieve the desired

performance.

1.2 Literature Review

1.2.1 Consensus of Linear MASs

Control of MASs is motivated by collective phenomena in natural systems and extensive

engineering applications, including multiple UAVs and mobile robots, distributed sensor

networks, load balancing and so on. Consensus is one of the most active research topics

in MASs from the systems and control perspective and it has achieved rapid progress

in recent years [29]. The goal is to design collective algorithms for a group of agents

such that they achieve certain agreement.

Consensus control has been intensively developed from MASs with linear to nonlin-

ear dynamics, from homogeneous to heterogeneous systems, from ideal communication

network to communication constraints, from a leader-following case to a leaderless case,

from theory to practice and so on. Nevertheless, there are still many open problems

that need more attention by control engineers.

6



1.2 Literature Review

From the viewpoint of the system structure, MASs can be classified into linear and

nonlinear systems. At the beginning of the research, consensus control was studied

for linear MASs. Many control strategies with interesting results have been developed

under this setting. MAS with linear dynamics is commonly represented by

ẋi(t) = Aixi +Biui

yi(t) = Cixi(t), i = 1, · · · , n, (1.1)

where xi ∈ R
l is the state, ui ∈ R

m is the control input and yi ∈ R
q is the output of

agent i with constant matrices Ai, Bi and Ci.

Early research works were mostly for MASs consisting of first-order or single inte-

grator dynamics [30, 31, 32]. The general solution for consensus in these MASs was

presented in [30]. The introduction to linear first-order MASs and sufficient conditions

to achieve consensus were provided in [33, 34].

The dynamics of linear first-order MASs with n agents is commonly given by

ẋi(t) = ui(t). (1.2)

Consensus is reached when the states of all agents converge to a common constant

value. For the leaderless case, consensus is usually said to be achieved if

lim
t→∞xi(t)− xj(t) = 0. (1.3)

The common control protocol for MASs (1.2) to achieve consensus (1.3) for the

leaderless case [30, 31, 33, 34, 35, 36] is

ui =

n∑
j=1

aij(t)(xj(t)− xi(t)), (1.4)

where aij(t) is the edge from agent j to i. The control protocol (1.4) can be applied to

achieve consensus under some constraints on the network.

In many practical applications such as vehicles, the dynamics of each agent contains

position and velocity as the state. This means that the system dynamics is in the form

of second-order or double integrator. Corresponding to general dynamics (1.1), the

dynamics of linear second-order MASs is commonly represented when Ai =

[
0 1
0 0

]
,

7



1. INTRODUCTION

Bi =

[
0
1

]
and Ci = I2. Or in other words

ẋ1i(t) = x2i(t)

ẋ2i(t) = ui(t), (1.5)

where the states x1i and x2i represent the position and velocity of the system respec-

tively and ui is the control input of agent i.

Compared with first-order linear MASs, the second-order systems are more compli-

cated for consensus control. The stability analysis in first-order MASs cannot be simply

extended to second-order systems. One of the common solutions for the leaderless case

with a strongly connected network topology is

ui (t) = k1

⎛
⎝ n∑

j=1

aij(t)(x1j (t)− x1i(t)) + k2

n∑
j=1

aij(t)(x2j (t)− x2i(t))

⎞
⎠ (1.6)

for some k1 and k2. Some control protocols have been developed to find the sufficient

condition for the gain k1 and k2 [33, 34, 36].

Many results were obtained for linear MASs with second-order dynamics under

different settings [32, 33, 34, 36, 37, 38, 39, 40]. An introduction and convergence

analysis for general linear MASs including first and second-order MASs was presented

in [33, 34, 36]. A leader-following consensus control for linear second-order MASs under

a time-varying topology was studied in [37]. Consensus control was developed in [32]

for second-order linear MASs with some restrictions in communication. In [36, 38],

the consensus protocol and its conditions were studied under a fixed and switching

topology. Consensus of MASs with double-integrator dynamics was developed in [39]

without relative velocity measurements. Some necessary and sufficient conditions for

consensus of second-order MASs with linear dynamics was investigated in [40].

Leaderless and leader-following consensus for first and second-order MAS with input

delay were proposed in [41] for directed graphs based on Lyapunov and Nyquist stability

approaches. In [42], consensus of second-order MASs with linear dynamics and time-

delay was improved using a weighted average prediction. Another consensus for second-

order MASs with time-delay can be found in [43]. In [44, 45], the control protocol was

proposed for consensus of second-order linear MASs with communication delay and

switching topology. LMI was studied in [46] for leaderless consensus of a class of

second-order linear MASs.

8



1.2 Literature Review

Consensus of linear MASs with higher-order dynamics is another challenging prob-

lem. The stability analysis in first and second-order MASs cannot be simply extended

to higher-order systems. Some interesting results have been obtained, for example in

[47, 48, 49]. The consensus control for higher-order MASs with identical multiple-input

and multiple-output (MIMO) linear dynamics was developed in [47] using output feed-

back controllers. In [48], consensus control for higher-order linear MASs was studied

under fixed and switching topologies. A consensus protocol for higher-order MASs with

linear dynamics was proposed in [49] under switching topology and occasionally missing

control inputs.

Research interest in linear MASs also shifts from homogeneous to heterogeneous

MASs. Corresponding to systems (1.1), MASs can be said to be homogeneous or

identical when Ai = A, Bi = B and Ci = C for all i. Some results on MASs with

homogeneous dynamics can be found in [49, 50, 51]. Leaderless consensus of MASs

with heterogeneous dynamics is more complicated. In [52, 53], a control protocol for

linear heterogeneous MASs was developed by synchronizing the output of every agent to

a local reference model. A dynamic controller was proposed in [54] for output consensus

of heterogeneous MASs with uncertainties.

Another major research line on consensus of linear MASs is optimal control. Some

interesting results on optimal consensus have been released under various settings.

Stochastic linear quadratic regulators (LQRs) were proposed in [55, 56, 57] with indef-

inite control weight cost for optimal consensus of MASs. An optimal leader-following

consensus for linear MASs with identical dynamics under a fixed network was proposed

in [58] using LQR, observer design and output feedback control. LQR was also pro-

posed in [59] for coupled stabilizable MASs in homogeneous dynamics under a fixed

directed topology. Sub-optimal hierarchical feedback control for leader-following con-

sensus for linear homogeneous MASs is studied using LQR in [60]. Necessary and

sufficient conditions for globally optimal consensus of homogeneous linear MASs was

studied in [61]. In [62], iterative adaptive dynamic programming was developed for

optimal leader-following consensus of nonidentical linear MASs. An optimal leaderless

consensus of identical linear MASs under a fixed directed network can be found in [63].

Valuable information about Lyapunov, adaptive and optimal cooperative control design

under directed communication graphs can also be found in [64].

9
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1.2.2 Consensus of MASs with Nonlinear Dynamics

MASs with linear identical dynamics is only a special case. The system dynamics of

MASs can be nonlinear in many practical cases. Therefore, the aforementioned control

strategies for consensus of linear MASs as described in Subsection 1.2.1 cannot be

applied anymore. The convergence analysis of consensus under this situation becomes

more complicated. Although not as much research has been done on MASs with linear

dynamics, some interesting results have been obtained for consensus of nonlinear MASs.

At the beginning of the research, the consensus controllers were designed for MASs

with simple nonlinear dynamics, which satisfy Lipschitz conditions. In several cases,

linear control protocols are still able to guarantee consensus of nonlinear MASs sat-

isfying Lipschitz conditions. Examples include [40] for first-order MASs, [65, 66] for

second-order MASs and [67] for more general MASs. Consensus control was studied

in [68] for leaderless MASs with Lipschitz nonlinear dynamics under a switching topol-

ogy. An adaptive control protocol was designed in [67] without global information for

MASs with general linear and Lipschitz nonlinear dynamics. Some interesting results

on consensus of MASs with non-Lipschitz nonlinear dynamics can also be found in

[69, 70, 71, 72, 73, 74, 75] under various settings.

In many practical situations, the agent dynamics are usually subject to uncertainties

that also induce heterogeneity. To handle system uncertainties, an internal model based

approach has been proven to be effective. For example, linear internal model based

consensus techniques can found in [53, 54, 76, 77] in different settings. The basic idea

is to introduce a reference trajectory for each agent and collectively synchronize these

references and hence agent outputs.

While certain nonlinearities of agent dynamics may be handled by feedforward com-

pensation, see, e.g., [78], uncertain nonlinearities likely bring more technical challenges.

Most existing results are based on internal model design. For instance, in [79], the au-

thors designed controllers for MASs of second-order nonlinear dynamics with agreement

on a constant. More general nonlinear dynamics were studied in [80, 81] that require

that all agents exchange full state information. The most sophisticated result was

given in [82] in the output communication setting using a small gain theorem. Other

relevant internal model designs can be found for cooperative output regulation in a

10
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leader-following setting; see, e.g. [83, 84]. Robust consensus protocol of second-order

nonlinear heterogeneous MAS with communication delay can be found in [85, 86].

Another research line is to deal with system uncertainties, in particular, unknown

parameters, using adaptive control. As with traditional adaptive control, the certainty

equivalence principle has a two-step design scheme. First, a controller is developed for

the systems with an ideal situation, where the uncertain parameter is assumed to be

known and it renders a Lyapunov function. Then in the second step, the uncertain

parameters in the controller are replaced by their estimates, which are updated by an

adaptive law along the gradient of a suitable Lyapunov function.

In the literature, such an adaptive control scheme has been investigated for MASs

in some situations. For example, a first-order MAS was studied in [87] for an undirected

graph. The result was presented in a more general framework in [88]. A similar adaptive

technique was used in [89] for both first and second-order MASs with a Nussbaum gain

added to deal with unknown control directions. Pinning consensus was proposed by

adaptively tuning the coupling strength in [90]. Another result on pinning consensus

control can be found in [91]. The adaptive consensus was studied in [92] for undirected

graph. Also, for undirected time-varying graphs under the jointly connected condition,

an adaptive scheme was studied for first-order MASs in [93] and [94] for the leader-

following and leaderless settings, respectively. In particular, in [93] each agent requires

“not only the information of its neighbours but also the information of its neighbours’

neighbours” and then in [94] the approach was improved to a purely distributed design.

Consensus control for MAS becomes significantly complicated under a directed

topology due to the associated asymmetric Laplacian matrix. Some interesting re-

sults on leader-following consensus of MASs with the unknown nonlinearities under a

fixed directed network can be found for first-order in [95], second-order [96] and higher-

order [97]. The nonlinear dynamics with the unknown nonlinearities in [95, 96, 97] were

approximated by neural network (NN). It is noted that consensus of MASs is achieved

with a residual error, not asymptotically exact.

Adaptive control is a common approach used to estimate the unknown constant pa-

rameters in the system dynamics. Many existing methods have studied the effectiveness

of adaptive control to guarantee the stability for a single agent or system. However,

most of the existing results are under an essential assumption that the nonlinear dynam-

ics is in the class of linearly parameterized nonlinear systems. The nonlinear dynamics

11
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is called linearly parameterized if the unknown constant parameters appear linearly in

the nonlinear function. For instance, the model reference adaptive control (MRAC)

method was proposed in [98, 99, 100] to handle systems with linearly parameterized

nonlinear dynamics. In [101, 102, 103, 104, 105, 106], L1 adaptive control, which is

an extension of MRAC, was developed for systems with uncertain nonlinear dynamics,

but still in the class of linearly parameterized nonlinear models.

Adaptive control under linearly parameterized assumption is unable to be widely

applied for prevalent applications in many nonlinearly parameterized dynamics models.

The system is called a nonlinearly parameterized model when the unknown constant

parameters appear nonlinearly in the nonlinear dynamics. The system dynamics with

the nonlinearly parameterized model are inevitable in industrial applications, for ex-

ample, fermentation processes [107], distillation columns, chemical reactors, separation

processes and bioreactors [108].

Nonlinearly parameterized uncertainties are always a difficult issue to handle in

adaptive control even for the single system scenario. Results on adaptive techniques to

handle nonlinearly parameterized models are still rare in the existing literature. Some

results were obtained, but not for a general nonlinear setting. The research based

on convex/concave nonlinear functions is a major research line for adaptive control of

nonlinearly parameterized models. Direct adaptive control has been investigated for

systems with convexly parameterized models. It is shown in [109] that the gradient

search goes to the right direction in a certain area in the state space by using the

convexity condition. Non-convexly parameterized systems have been studied in [110] by

using a min-max algorithm. Other results on nonconvexly parameterized systems can

be found in [111, 112]. In [113], adaptive control for nonlinearly parameterized systems

was studied by exploiting the monotonicity property of certain nonlinear functions.

Direct and indirect adaptive algorithms were proposed in [114, 115] by identifying the

monotonicity property. This method is called immersion and invariance (I&I) adaptive

control. Another interesting result can be seen in [116], where an adaptive control

strategy is studied based on a forward/backward update law.

The class of systems with fractional parameterization has been considered in another

research line for adaptive control of nonlinearly parameterized models. In this case, the

unknown constant parameters appear affinely in both numerator and denumerator.

Some results have been reported for several cases. For example, an adaptive control

12
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method was proposed in [117] for fractional parameterization where uncertainties are

bounded by a function with fractional parameterization. The adaptive repetitive control

was developed in [118] for systems with unknown constant parameters and unknown

constant time functions. Another adaptive control method for a class of strict-feedback

nonlinearly parameterized systems was studied in [119] by introducing a biasing vector

function into the parameter estimate.

Intelligent computation is another technique that can be applied to handle nonlin-

early parameterized systems. For example, fuzzy approximators in [120] and neural

networks (NN) in [121] were proposed to handle the systems with nonlinearly param-

eterized nonlinear dynamics. However, the intelligent system techniques like NN and

fuzzy logic only approximate the nonlinear function. In adaptive computation, com-

plex uncertain nonlinearities including linearly and nonlinearly parameterized nonlinear

models are simplified using the theorem of universal approximation.

The adaptive control method was also studied for consensus of nonlinear MASs sub-

ject to uncertainties. However, there are no results available for MASs with nonlinearly

parameterized dynamics. Some results have been obtained for linearly parameterized

MASs. For example, consensus control for linearly parameterized MASs with an undi-

rected graph can be found in [87] for first-order system and more general framework

in [88]. A centralized adaptive consensus scheme for first-order MASs with linearly

parameterized nonlinearities was developed for the leader-following case in [93] under

jointly connected topologies. Further extension can be found in [94], where a pure

distributed adaptive consensus was developed for leaderless MASs with linearly param-

eterized systems.

Intelligent computation was also studied to handle uncertainties in the nonlinear

dynamics in MASs, but for the linearly parameterized model. For example, NN was

proposed in [95] for first-order MASs. In [96], NN was also applied to handle linearly

parameterized systems, but for second-order MASs. Further extension for higher-order

MASs with linearly parameterized systems can be found in [97]. Consensus of MASs in

[95, 96, 97] is achieved with a residual error. NN approximation of the nonlinear func-

tion means that a residual error exists. The residual error is also caused by distributed

implementation of the adaptation law.
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1.3 Main Work of the Thesis

In this thesis, our focus is on the study of distributed adaptive consensus for nonlin-

ear MASs subject to uncertainties. The main results of this thesis are presented in

Chapters 3, 4 and 5. Centralized adaptive consensus of heterogeneous nonlinear MASs

with unknown constant parameters is studied in Chapter 3. Based on the results

in Chapter 3 and other existing literature, we develop a distributed adaptive control

scheme for consensus of heterogeneous nonlinear MASs with a linearly and nonlinearly

parameterized model in Chapter 4 and 5, respectively.

In Chapter 3, we start our study on consensus of MASs with unknown constant

parameters in the nonlinear dynamics using the traditional adaptive control method.

The nonlinear function is assumed to be in the class of linearly parameterized nonlinear

models. Each agent needs the information from the neighbours and neighbour’s neigh-

bours to update its controller. The convergence analysis is solved by using Lyapunov

stability analysis and Barbalat’s Lemma.

There are some limitations in the adaptive approach when applied to distributed

consensus control. Based on the existing literature as presented in Subsection 1.2.2

and results in Chapter 3, we find some technical difficulties in designing a distributed

adaptive control scheme to achieve asymptotic consensus for MASs with uncertain

nonlinearities. From the results in Chapter 3, we find the inherent drawback in an

adaptive law along the gradient of Lyapunov function to solve this open problem due

to the lack of its distributed implementation. The adaptive approach in Chapter 3 can

only be applied in a distributed fashion for limited cases.

In Chapter 4, we propose a novel distributed adaptive scheme, not relying on the

gradient of the Lyapunov function, for general nonlinear MASs with unknown constant

parameters. We introduce an input compensation as a novel idea for asymptotic con-

sensus such that the steady state of the estimation error is not zero but a manifold in

the state space of agent states and estimated parameters. Our approach is not limited

to first-order MASs, but applicable to more general MASs. A distributed adaptive

framework for general linearly parameterized nonlinear MASs is studied in this chap-

ter. Then an application to our approach for second-order nonlinear MASs is presented

as a case study. Information about global networked agents is not required anymore

to generate the controller. Moreover, consensus can be achieved asymptotically. This
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means that the controller is more practical. Therefore, the inherent drawback in an

adaptive law along the gradient of Lyapunov function is removed.

One of the challenges in designing adaptive control is for nonlinearly parameterized

systems. The existing adaptive control methods for linearly parameterized dynamics

cannot be applied anymore. Adaptive control approaches to handle this situation for an

individual setting or single agent are still very rare. Some results have been obtained,

however not for general nonlinear function. Moreover, none of the results have been

successfully applied to MASs.

In Chapter 5, the consensus problem encountered is more complicated. The non-

linear dynamics in the MASs is nonlinearly parameterized. We extend the results in

Chapter 4. A distributed adaptive framework for consensus of nonlinearly parameter-

ized MASs is studied in this chapter. Then an application to second-order MASs is

proposed as a case study.

1.4 Thesis Outline

In Chapter 1, we introduced the research background and motivation of MASs and

adaptive control. Subsequently, we presented the overview of consensus of MASs with

linear and nonlinear dynamics. Following that, we presented the main work and outline

of the thesis.

In Chapter 2, we will review some algebraic graph theory, including basic knowledge

and the associated matrices. Then we will present some preliminary knowledge about

adaptive control.

In Chapter 3, we will develop consensus control for MASs subject to uncertainties

using traditional adaptive control methods. In the first part, we will propose a central-

ized adaptive consensus framework for MASs with uncertain nonlinearities. Then an

adaptive consensus control for second-order MASs will be presented as a case study.

The convergence of every agent will be analyzed using Lyapunov stability and Bar-

balat’s Lemma. We demonstrate the performance of the proposed controller using a

numerical example.

In Chapter 4, we will develop a distributed consensus scheme for MASs with un-

certainties. This chapter will be the extension of the control protocol in Chapter 3 and

a distributed consensus control law will be designed. Before presenting our approach,
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we will provide problem formulation and the inherent drawback in adaptive consensus

with some motivation examples. After that, we will propose a distributed adaptive

framework for general linearly parameterized nonlinear MASs. Following that, we will

present an application of our approach for second-order nonlinear MASs as a case study.

Lyapunov stability and Barbalat’s Lemma will be used to analyze consensus. To il-

lustrate the effectiveness of our approach, a numerical example will be presented with

various scenarios.

In Chapter 5, we will extend the consensus control method in Chapter 4 to more

general MASs in the form of a nonlinearly parameterized model. After presenting prob-

lem formulation and preliminaries, a distributed adaptive framework will be presented

for consensus of nonlinearly parameterized MASs. Following that, an application to

second-order MASs will be proposed as a case study. Similar to the previous chapter,

we will apply Lyapunov stability and Barbalat’s Lemma to prove consensus. We will

simulate the proposed control in a numerical example to demonstrate the performance

of our approach.

In Chapter 6, we will summarize the whole thesis and give a short discussion for

future research.
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2

Preliminary Knowledge

2.1 Algebraic Graph Theory

Algebraic graph theory is a very important tool for studying MASs. The communication

link among agents in a particular connected environment can be represented by a

topology or graph. In the existing literature, graph theory has been extensively used

to solve the consensus problem in MASs. In this section, we will present the basic

concepts and some fundamental properties of graphs. More information on the graph

theory for MASs can be found in [33].

2.1.1 Basic Concepts

Consider the network topology represented by a graph G = {V,E} with n nodes (i.e.,

agents). Denote a finite non-empty set of nodes as V = {1, · · · , n}. The set of commu-

nication links or the set of edges is represented by E ⊂ V × V. Denote an element of

E as (i, j), where i, j = 1, · · · , n and i %= j. An edge from i to j is also represented by

an arrow, where the tail is at node i and the head is at node j. The number of edges

having node i as a head is called the in-degree of i, denoted by di. The number of edges

having node i as a tail is called the out-degree of i. We denote the adjacency matrix

as A = [aij ] and the in-degree matrix as D = diag{di}.
A graph is said to be a balanced graph if the in-degree and the out-degree are equal

for every node i. Two examples of balanced graph can be seen in Fig. 2.1. Based on the

interaction among these nodes, graphs can be divided into two categories, which are

directed and undirected. In a directed graph, a parent node i receives the information
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from a child node j, but not vice versa. A directed graph can be said to be connected

if there is a directed link from node i to j for each pair of nodes i and j. A pair of

nodes i and j are strongly connected if there are two links with opposite directions

between nodes i and j. Therefore, every node pair can obtain information from each

other. A directed graph is said to be a connected graph if there is no isolated node

in a connected topology environment. Contrary to a directed graph, in an undirected

graph, two linked nodes i and j are always able to obtain information from each other,

or we can say that the pairs of nodes are unordered. In an undirected graph, nodes i

and j are said to be connected if there is a link between i and j, otherwise they are

unconnected. An undirected topology is said to be connected if there is a link for each

pair of nodes i and j. An example for undirected and directed graphs can be seen in

Fig. 2.2 and 2.3 respectively.

Figure 2.1: Two balanced graphs

One kind of connected directed graph is a (directed) tree, where each node has a

parent, except one node, called the root. A directed graph is said to have a spanning

tree if all of its nodes are in a subgraph which is a tree. A connected directed graph may

have several spanning trees. At least one directed spanning tree exists in a connected

Figure 2.2: An undirected graph Figure 2.3: A directed graph
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directed graph. As an example, a spanning tree of the directed graph in Fig. 2.3 is

illustrated by bold links in Fig. 2.4.

Figure 2.4: A spanning tree

2.1.2 Graph Matrices

A graph has some associated matrices commonly used in MASs. The edges weight

aij > 0 if (j, i) ∈ E, otherwise aij = 0. The weighted in-degree of node i is given by

di =

n∑
j=1

aij ,

and the weighted out-degree of node i is defined as

doi =
n∑

j=1

aji.

The adjacency matrix A is defined as {aij} with zero diagonals. The degree matrix

D is a diagonal matrix defined as D = diag{di}. This matrix is generated from A

and contains information about the number of edges attached to every node. In an

undirected graph, A is symmetric. Therefore, an undirected graph is a balanced graph.

Laplacian matrix plays a very important role in the study of MASs. The Laplacian

matrix L is generated using matrices A and D such that L = D − A = [Lij ] ∈ R
n×n.

In an undirected graph, L is a symmetric matrix. In a connected graph, L is a positive

semi-definite matrix that at least has one zero eigenvalue and the other eigenvalues

have positive real parts. Hence L has rank n− 1. Note that the sum of every row of L

is equal to zero.
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The following is an example to generate A, D and L. Consider a directed graph in

Fig. 2.3. Let every edge weight be 1. Then A and D are

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 1 0
0 1 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

hence the Laplacian matrix L is

L =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 2 0 −1 0
0 −1 2 −1 0
0 0 0 1 −1
−1 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

2.2 Adaptive Control

This section contains a brief introduction to adaptive control. Consider a first-order

system with uncertain nonlinear dynamics

η̇ = ϑη + u, (2.1)

where η is the state, u is control input and ϑ is an unknown constant parameter.

Noting that if ϑ were known for feedback control design, by selecting

u = −κ1η − ϑη,

where κ1 > 0, then the equilibrium point of system (2.1) is globally asymptotically

stable.

However, ϑ is unknown in many practical situations. There are two common ap-

proaches that propose to handle system dynamics with uncertainties, specially with

unknown constant parameters. The first approach is a fixed gain feedback control.

Under this scheme, a fixed gain feedback control is designed to handle the changing

parameters within the bound of uncertainties. The idea behind a fixed-gain control is

to tune the gain to dominate the uncertain dynamics. For system (2.1), the stability is

guaranteed by selecting u = −κη as long as κ > |ϑ| is satisfied. The weakness of this

approach is that the bound must be known in advance.
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The second approach is adaptive control. This is a systematic control technique

with the capability to adapt itself to handle the changing environment, such as un-

known constant parameters. An adaptive controller can be designed without a priori

information about the bound of uncertainties. In this scheme, the adaptation law will

estimate the unknown parameters in real time, hence the controller is adjustable. Com-

pared with a fixed gain feedback control, adaptive control has an additional block, i.e.,

an adaptation law that allows the controller to update itself. Hence the damping in

the system response can be handled when the changing parameters occur. The idea

behind adaptive control is conceptually simple. The parameter estimate is generated in

the block of adaptation law, then it becomes additional information for the controller

to improve itself as if it were the true parameter. The estimate will be continuously

updated until convergence with the true value of the unknown parameters. The concept

of this scheme is called the certainty equivalence principle. More detailed information

about the adaptive approach can be found in [100, 122].

Now, we design an adaptive controller for the system (2.1). We select the corre-

sponding certainty-equivalent controller

u = −κ1η − κ2ϑ̂η,

where κ1,κ2 > 0 and ϑ̂ is the estimate of ϑ generated by adaptive law. We choose the

Lyapunov function of system (2.1) to be

U(η, ϑ̂) =
1

2
η2 +

1

2κ2
(ϑ̂− ϑ)2.

By selecting
˙̂
ϑ = κ2η

2,

The time-derivative of U(η, ϑ̂) along the closed-loop system is

U̇(η, ϑ̂) = ηη̇ +
1

κ2

˙̂
ϑ(ϑ̂− ϑ)

= −κ1η
2 − η2(ϑ̂− ϑ) +

1

κ2

˙̂
ϑ(ϑ̂− ϑ)

= −κ1η
2. (2.2)

It is clear to see that both η and ϑ̂ − ϑ are bounded. By Barbalat’s Lemma, then

limt→∞ η = 0.
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3

Centralized Adaptive Consensus

of Multi-Agent Systems

3.1 Introduction

Research on cooperative control of MAS has been growing progressively in recent years.

Consensus is an important topic in cooperative control of MASs. The basic idea of a

consensus approach is to drive the state or output of every agent to a common value

(agreement). Many results have been obtained for MASs with linear dynamics as we

discussed in the literature review section in Chapter 1. We can conclude that research

on first and second-order MASs with linear dynamics is relatively mature in the existing

literature.

Research on MASs with nonlinear dynamics is a more challenging problem. At the

beginning, consensus problems were studied for nonlinear MASs satisfying Lipschitz

conditions. In some cases, linear consensus controllers are still able to handle this.

However, in many practical situations, the nonlinear dynamics of MASs may not satisfy

Lipschitz conditions, hence linear consensus controllers cannot be applied anymore.

Consequently, a nonlinear controller is required. In practice, the system dynamics

may contain uncertain nonlinearities that may differ for different agents. This induces

heterogeneity in the MASs and makes the consensus problem more complicated.

In this chapter, we study a centralized adaptive consensus framework for nonlinear

heterogeneous MASs subject to uncertainties. A control protocol is designed to achieve

consensus by maintaining the collective nominal behaviour for all agents.
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We organize the remainder of this chapter as follows. The problem formulation is

presented in Section 3.2. In Section 3.3, we present a centralized adaptive consensus

framework for MASs to maintain its nominal dynamics behaviour with the presence of

uncertainties in the nonlinear dynamics. An application to second-order MASs under

an undirected network is presented in Section 3.4. In Section 3.5, a numerical example

is given to illustrate the effectiveness of our approach. We close this chapter with a

summary in the last section.

3.2 Problem Formulation

Consider a MAS with n ≥ 2 autonomous agents expressed by

ẋi = fi(x), i = 1, · · · , n (3.1)

where xi ∈ R
l is the state of the i and fi(x) is a general function representing the agent

dynamics. System dynamics (3.1) has a compact form

ẋ = f(x), (3.2)

where

x = [xT
1, x

T
2, · · · , xT

n]
T

f(x) = [fT
i (x1), f

T
2 (x2), · · · , fT

n(xn)]
T.

This is a collective nominal behaviour of closed-loop MAS without the presence of

uncertainties in the dynamics. MAS (3.2) is supposed to achieve consensus with a

particular collective dynamics behaviour. This is described by a property in terms of

a Lyapunov-like function V (x) satisfying the assumption below.

Assumption 3.2.1 There exists a continuously differentiable function V (x) satisfying

α(‖x‖R) ≤ V (x) ≤ ᾱ(‖x‖R)1

for a matrix R ∈ R
n̄l×nl with n̄ ≤ n and class K∞ functions α and ᾱ, such that,

∂V (x)

∂x
f(x) ≤ −α(‖x‖R) (3.3)

for a class K∞ function α.

1Throughout the thesis, the notation ‖x‖2R = xTRTRx is used.
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Remark 3.2.1 For xi ∈ R, if a full row matrix R ∈ R
(n−1)l×nl is perpendicular to

1 =
[
1 . . . 1

]T ∈ R
n, then ‖x‖R = 0 implies x = xo1 for some xo ∈ R, that is a

typical consensus phenomenon.

Now, we consider the presence of uncertainties in the MAS. The objective is to

propose an adaptive consensus protocol to handle the uncertainties in the dynamics

such that consensus is achieved by maintaining the collective behaviour of the nominal

system. The adaptive law will be designed separately from the consensus protocols in

the nominal dynamics system. This situation is implicitly shown in the closed-loop

systems (4.1).

Consider the MAS subject to uncertainties with n ≥ 2 autonomous agents described

by

ẋi = fi(x) + gi(xi, wi, μi), i = 1, · · · , n (3.4)

where the nonlinear function gi(xi, wi, μi) ∈ R
l contains constant unknown parameters

wi and an additional control input μi to adaptively handle the uncertainties. Suppose

the uncertainties to be in the class of linearly parameterized structure, i.e.,

gi(xi, wi, μi) = hi(xi)(wi − μi). (3.5)

We can rewrite the closed-loop system of MAS (3.4) in a compact form as follows

ẋ = f(x) +H(x)(w − μ), (3.6)

where

w = [wT
1, w

T
2, · · · , wT

n]
T,

μ = [μT
1, μ

T
2, · · · , μT

n]
T,

H(x) = diag
[
h1(x1) h2(x2) · · · hn(xn)

]
.

The uncertain nonlinear functions gi(xi, wi, μi) could be trivially cancelled by μi =

wi if the parameter wi were known. In the practical situation, an unknown wi may

exist in the dynamics, hence an additional controller is required to handle the unknown

constant parameters.
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3.3 A Centralized Adaptive Scheme

In this chapter, an adaptive controller is designed along the gradient of the Lyapunov

function V (x) for the case with unknown wi. The centralized adaptive scheme is sum-

marized as follows.

Theorem 3.3.1 For the system (3.4) with (3.5) under Assumption 3.2.1, with the con-

troller

μ = ŵ

˙̂wT = λ
∂V (x)

∂x
H(x), λ > 0 (3.7)

the time-derivative of

U(x, w̃) = V (x) +
1

2λ
w̃Tw̃ (3.8)

with w̃ = ŵ − w satisfies

U̇(x, w̃) ≤ −α(‖x‖R), (3.9)

along the trajectory of the closed-loop system (3.4)+(3.5)+(3.7).

Proof: Direct calculation shows that the derivative of V (x) along the dynamics (3.4)

with (3.5) satisfies

V̇ (x) =
∂V (x)

∂x
f(x)− ∂V (x)

∂x
H(x)w̃

≤ −α(‖x‖R)− ∂V (x)

∂x
H(x)w̃.

Hence,

U̇(x, w̃) ≤ −α(‖x‖R)− ∂V (x)

∂x
H(x)w̃ +

1

λ
˙̃wTw̃

≤ −α(‖x‖R)

for ˙̃w = ˙̂w given in (3.7).

The adaptive law (3.7) can be rewritten as follows, for i = 1, · · · , n,

μi = ŵi

˙̂wT
i = λ

∂V (x)

∂xi
hi(xi), λ > 0. (3.10)

From (3.10), we can see that both the local state of agent i and full network state x

are required in designing the controller. The Lyapunov function V (x) for the nominal

behaviour system is required to be designed in a centralized manner.
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Remark 3.3.1 The adaptive control (3.7) in Theorem 3.3.1 is designed in a centralized

fashion. A collective nominal dynamics behaviour fi(x) is typically implemented in

a distributed fashion beforehand by assuming that there are no uncertainties in the

dynamics. In the next section, application to Theorem 3.3.1 will be implemented for

second-order MASs with unknown constant parameters.

3.4 Application to A Network of Second-Order Uncertain

Dynamics

Consider a group of n ≥ 2 autonomous agents described by the set of equations

ṗi = vi

v̇i = ξi (wi, vi) + ui, i = 1, . . . , n, (3.11)

where pi, vi, ui ∈ R are the position, velocity and control input of the agent i respec-

tively. The nonlinear function ξi(wi, vi) = ζi(vi)wi represents heterogeneous nonlinear-

ities with known function ζi(vi) and an unknown constant parameter wi.

For more convenience of presentation, we can rewrite MAS (3.11) as

ẋi = Axi + hi(xi, wi) + ui, (3.12)

and in a compact form as

ẋ = Ax+H(x,w) + u (3.13)

where

A =

[
0 1
0 0

]
, xi =

[
pi
vi

]
, hi(xi, wi) =

[
0

ζi(vi)wi

]
,

p =

⎡
⎢⎣

p1
...
pn

⎤
⎥⎦ , v =

⎡
⎢⎣

v1
...
vn

⎤
⎥⎦ , x =

[
p
v

]
,

ζ(v) = diag
[
ζ1(v1)

... ζn(vn)

]
, w =

⎡
⎢⎣

w1
...
wn

⎤
⎥⎦ ,

H(x,w) =

[
0n

ζ(v)w

]
, u =

⎡
⎢⎣

u1
...
un

⎤
⎥⎦ .
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In this section, the network topology is represented by an undirected graph G =

{V,E}, where V = {1, 2, · · · , n} is a finite non-empty set of nodes and E ⊂ V × V is

the set of undirected edges. Let us denote the adjacency matrix as A = [aij ], where

the edge from i to j is denoted as aij > 0 if there exists a communication link from

i to j. The in-degree matrix of undirected network is represented by D = diag (di).

The Laplacian matrix is defined as L = D − A = [Lij ] ∈ R
n×n, which has elements of

Lij = −aij for j �= i and Lii =
∑n

j=1,j �=1 aij .

Assumption 3.4.1 The network is connected.

Consider the virtual reference for the networked agents (3.11) is described as

ṗo = vo

v̇o = 0. (3.14)

There are two typical scenarios for MAS to achieve consensus by following the

agreed trajectory (3.14):

(i) Assigned reference trajectory

In this case, the reference trajectory (3.14) is prescribed as a priori information.

Or, in other words, the relative position and velocity between agent i and the

leader are always available for feedback control design, then the consensus problem

simply reduces to distributed control for each agent. This is a type of traditional

control problem. However, if the reference trajectory is available only to some

agents or one agent, then consensus becomes more complicated. An interesting

result for linear MASs can be seen in [123], and results for nonlinear MASs in

[96].

(ii) Unassigned reference trajectory

In this setting, the reference trajectory (3.14) is not prescribed a priori. It means

that the relative position and velocity between agent i and the leader are not

available for feedback control design for any agent. The consensus problem in

this situation is more complicated. Consensus of MAS with nonlinear dynamics

under this setting is limited in the literature. Some results can be found in

[79, 81, 82] by applying robust control approaches.
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In this application, we investigate the setting of a general undirected leaderless MAS

with uncertain nonlinearities under Assumption 3.4.1, where the reference trajectory

(3.14) is not prescribed a priori. The objective of asymptotic consensus is

lim
t→∞ pi(t)− po(t) = 0

lim
t→∞ vi(t)− vo(t) = 0 (3.15)

for some time functions po(t), vo(t) : [0,∞) 	→ R.

Recall that the Laplacian matrix L has at least one zero eigenvalue and the rest of

the eigenvalues have positive real parts. It has the following property

L1 = 1TL = 0,

where 1 =
[
1 · · · 1

]T
. There exists a matrix U1 ∈ R

(n)×n−1 such that

Ū =
[

1√
n
1 U1

]
is an orthogonal matrix. As a result, the Laplacian matrix L can be transformed into

Ū−1LŪ =

[
0 0
0 H̄

]
,

where H̄ is a positive definite matrix with all positive eigenvalues of L on the diagonal.

Let us define the matrix R as follows[
UT
1 p

UT
1 v

]
= Rx, (3.16)

where R has a full rank and the rows of R are perpendicular to span {1⊗ I2}. From

the definition of Ū and Ū−1, one has

1

n
11T + U1U

T
1 = I (3.17)

and

H̄UT
1 = UT

1LU1U
T
1

= UT
1L

(
I − 1

n
11T

)
= UT

1L

Before giving the proof for the control protocol for MAS (3.11), let us introduce

two technical lemmas which will be used to prove Theorem 3.4.1.
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Lemma 3.4.1 [33] The network is under Assumption 3.4.1. Let γ1, γ2 ∈ R be the

weights of the consensus protocol and Λi = 2, 3, . . . , n is the positive eigenvalue of L.

The matrix

Ā =

[
0 In−1

−γ1H̄ −γ2H̄

]

has stable eigenvalues if and only if the consensus weights satisfy γ1, γ2 > 0 and they

are chosen as follows:

(i) If the i-th eigenvalue Λi of L is positive and real, then γ1, γ2 > 0.

(ii) If Λi is complex, then

γ1γ2 > maxi
Im2{Λi}− Re2{Λi}

Re2{Λi} |Λi|2
.

Lemma 3.4.2 The network is under Assumption 3.4.1, consider MAS (3.11) with ξi(wi, vi) =

0. Consensus is achieved by taking the following control protocol

u = −γ1Lp− γ2Lv, (3.18)

where γ1 and γ2 are properly selected such that the matrix Ā is Hurwitz. Let P =[
P̄ H̄

H̄ H̄

]
> 0 ∈ R

(2n−2)×(2n−2) is a unique solution to the Lyapunov equation

PĀ+ ĀTP = −Q < 0,

where P̄ > 0 ∈ R
(n−1)×(n−1). The time-derivatives of Lyapunov function V (x)

V (x) = xTRTPRx (3.19)

satisfying

λmin(P )‖x‖2R ≤ V (x) ≤ λmax(P )‖x‖2R
along the closed-loop system is

V̇ (x) ≤ −λmin(Q)‖x‖2R. (3.20)
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Proof: We can write the closed-loop system of MAS (4.15) with free uncertainties

and under controller (3.18) as

ṗ = v

v̇ = −γ1Lp− γ2Lv. (3.21)

By doing the calculation using the facts in T and T−1, we have

Rẋ =

[
UT
1 ṗ

UT
1 v̇

]

=

[
UT
1 v

−γ1U
T
1Lp− γ2U

T
1Lv

]
(3.22)

=

[
UT
1 v

−γ1H̄UT
1 p− γ2H̄UT

1 v

]

=

[
0 In−1

−γ1H̄ −γ2H̄

] [
UT
1 p

UT
1 v

]
= ĀRx. (3.23)

Now, we can calculate the time-derivatives of Lyapunov function (3.19)

V̇ (x) = xTRTPRẋ+ ẋTRTPRx

= xTRTPĀRx+ [ĀRx]TPRx

= xTRT(PĀ+ ĀTP )Rx

= xTRTQRx

≤ −λmin(Q)‖x‖2R. (3.24)

The proof is completed.

The main result on a centralized adaptive controller for MAS (3.11) is stated in the

Theorem 3.4.1.

Theorem 3.4.1 The graph is under Assumption 3.4.1. Consider MAS (3.11), consen-

sus is achieved in the sense of (3.15) for some time functions po(t), vo(t) : [0,∞) 	→ R

by taking the following control protocol

u = −γ1Lp− γ2Lv − ζ(v)μ (3.25)

31
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where the consensus weight γ1 and γ2 are provided in Lemma 3.4.2 and

μ = ŵ

˙̂w = γζ(v)L(p+ v), (3.26)

with a positive constant γ.

Proof: The closed-loop system of MAS (3.13) with controller (3.25) can be written

as

ẋ = Āx−H(x, w̃), (3.27)

where

H(x, w̃) =

[
0n

ζ(v)w̃

]
.

From Lemma 3.4.2, we can see that ẋ = f(x) in this application is represented by

MAS in ideal situation 3.21.

The Lyapunov function of MAS (3.27) is chosen to be

U(x, w̃) = V (x) +
1

γ
w̃Tw̃.

The time-derivatives of U(x, w̃) along the closed-loop system is

U̇(x, w̃) = xTRTPRẋ+ ẋTRTPRx+
1

γ
˙̂wTw̃ +

1

γ
w̃T ˙̂w

= xTRT(PĀ+ ĀTP )Rx− xTRTPRH(x, w̃)−HT(x, w̃)RTPRx

+(pT + vT)Lζ(v)w̃ + w̃Tζ(v)L(p+ v)

= −xTRTQRx− (pT + vT)U1H̄UT
1 ζ(v)w̃ − w̃Tζ(v)U1H̄UT

1 (p+ v)

+(pT + vT)Lζ(v)w̃ + w̃Tζ(v)L(p+ v)

= −xTRTQRx− (pT + vT)Lζ(v)w̃ − w̃Tζ(v)L(p+ v)

+(pT + vT)Lζ(v)w̃ + w̃Tζ(v)L(p+ v)

≤ −λmin(Q)‖x‖2R (3.28)

We can see that both ‖x(t)‖R and z(t) are bounded. By Barbalat’s Lemma, one

has limt→∞ ‖x(t)‖R = 0, that is,

lim
t→∞

[
UT
1 p(t)

UT
1 v(t)

]
= 0. (3.29)
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Let po(t) =
1
n1

Tp(t) and vo(t) =
1
n1

Tv(t). From the following relationship

p = Ū Ū−1p

=
[

1√
n
1 U1

] [ 1√
n
1Tp

UT
1 p

]

= 1(
1

n
1Tp) + U1(U

T
1 p),

and

v = Ū Ū−1v

=
[

1√
n
1 U1

] [ 1√
n
1Tv

UT
1 v

]

= 1(
1

n
1Tv) + U1(U

T
1 v),

one has

lim
t→∞ p(t)− 1po(t) = U1 lim

t→∞UT
1 p(t) = 0

lim
t→∞ v(t)− 1vo(t) = U1 lim

t→∞UT
1 v(t) = 0.

This completes the proof.

Remark 3.4.1 The control protocol (3.25) is composed of two parts. The first part is

the controller (3.18) proposed to achieve consensus for the ideal situation, where the

nonlinear function ξi(wi, vi) vanishes. The second part is the adaptive controller (3.26)

added to the controller when the uncertain nonlinear dynamics ξi(wi, vi) is taken into

account. These two parts can be designed separately as stated in the Theorem 3.4.1.

Remark 3.4.2 Although adaptive law (3.7) is designed along the gradient of Lyapunov

function in a centralized manner as stated in the Theorem 3.3.1, it can, however, be

applied in a distributed fashion as a special case. MAS (3.13) with controller (3.25)

and adaptive law (3.26) is one of the examples. Let

Lip = −
n∑

j=1

aij(pj − pi)

Liv = −
n∑

j=1

aij(vj − vi),
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where Li is the i-th row of L. Then (3.13) and (3.26) can be rewritten in distributed

algorithm as follows

ui = −γ1Lip− γ2Liv − ζi(vi)μ,

μi = ŵi

˙̂wi = γζi(vi)Li(p+ v).

3.5 Numerical Simulation

Consider a MAS with n = 6 autonomous agents described by

ṗi = vi

v̇i = ζi(vi)wi + ui, i = 1, . . . , n, . (3.30)

The function ζi(vi)’s are given as follows

ζi(vi) =

⎧⎪⎨
⎪⎩
sin v3i , i = 1, 2

cos vi, i = 3, 4

sin v2i , i = 5, 6

.

Assume all the unknown parameters are selected within the interval [−20, 20]. The

network topology is given in Fig. 3.1.

Figure 3.1: An undirected network topology of six agents

From Fig. 3.1, we can generate the Laplacian matrix

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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In this section, we will present several simulation results with various scenarios to

see the effectiveness of the proposed controller. The initial conditions are chosen as

follows

p(0) =
[
2 3 2.5 0 −3 −0.5

]T
v(0) =

[
3 2 −3 2.5 −1 1.5

]T
,

and the unknown constant parameters are

w =
[
20 −10 6 −4 −14 −20

]T
,

In the first scenario, we demonstrate the simulation of MAS (3.30) with ui = 0.

Fig. 3.2 shows that consensus is not achieved under this situation. Each agent moves

without controller from its initial position and velocity according to its own nominal

behaviour and nonlinear dynamics.
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Figure 3.2: Profile of state trajectories of six agents without controller

Now, we consider MAS (3.30) when free of uncertainties i.e. ζi(vi)wi = 0. The

consensus controller studied in Lemma 3.4.2 is implemented for each agent. By Lemma

3.4.1, for P̄ = 2In−1, we select γ1 = 5 and γ2 = 5, then Ā is Hurwitz and Q is positive
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definite. Under this situation, consensus is guaranteed to be achieved under controller

(3.18). Or, in other words, this situation represents MAS under ideal condition ẋ = f(x)

as described in (3.2). The simulation results for this setting can be seen in Fig. 3.3. In

the plotted figure, we show that consensus is achieved as concluded in Lemma 3.4.2.
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Figure 3.3: Profile of state trajectories of six agents under ideal situation

When the nonlinear dynamics ζi(vi)wi is taken into account, then an adaptive

controller is required to be added in the control structure to handle the uncertain

nonlinearities. By Theorem 3.4.1, the adaptive controller is generated by the following

adaptation law

˙̂w = γζ(v)L(p+ v),

where γ = 100.

To see the performance and the effectiveness of consensus control studied in Theo-

rem 3.4.1, we compare the response of the closed-loop system with and without adaptive

controller. Fig. 3.4 and 3.5 illustrate the profile of state trajectories of six agents to

achieve consensus without and with adaptive controller respectively. From the sim-

ulation results, we can see that consensus cannot be achieved for MAS with linear

consensus protocol only. The controller (3.18) is not enough to guarantee consensus
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due to the presence of disturbance in the dynamics. By adding adaptive controller, the

uncertain nonlinearities can be handled. Fig. 3.6 shows that the estimator ŵi converges

to the true value of unknown constant parameters as well as the dynamics of adaptive

law ˙̂wi converging to zero. The estimation error w̃i also converges to zero as can be

seen in Fig. 3.7. Therefore, consensus can be achieved as concluded in Theorem 3.4.1.
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Figure 3.4: Profile of state trajectories of six agents without adaptive controller

When the range of unknown constant parameters interval is increased to be [−100, 100],

under similar controller, consensus still can be achieved. In this scenario, wi is selected

to be

wi =
[
100 80 30 −20 −70 −100

]T
.

The profile of state trajectories of six agents is illustrated in Fig. 3.8. Compared

with the case where unknown constant parameters are within the interval [−20, 20], the

controller now requires a little bit more time to achieve consensus. From Fig. 3.9 and

3.10, we can see that both ˙̂wi and w̃i converge to zero. This means that the adaptive

controller is able to estimate the unknown constant parameters. This situation shows

that the adaptive controller has the capability to cope with the changing environment.
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Figure 3.5: Profile of state trajectories of six agents with adaptive controller

Based on the aforementioned simulation results, we can verify that asymptotic consen-

sus can be achieved using the proposed controller as concluded in Theorem 3.4.1. We

also can see the performance of the adaptive controller to handle uncertain nonlineari-

ties.

3.6 Summary

In this chapter, we have presented a centralized adaptive scheme for a MAS that aims

to maintain its nominal collective behaviour subject to uncertain nonlinearities. The

controller contains two main components that can be designed separately. The first is

a control protocol designed for the MAS when free of uncertainties. The second is an

adaptive controller added to the control structure when the nonlinear dynamics with

unknown constant parameters exist. The proposed adaptive controller is incorporated

by the certainty equivalence principle. The effectiveness of our approach is presented

for the consensus problem for second-order MASs subject to uncertainties under a fixed

undirected network. We present some simulations with various settings to illustrate the

38



3.6 Summary

time (s)
0 2 4 6 8 10 12 14 16 18 20

ŵ
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Figure 3.6: Profile of ŵi and ˙̂wi with adaptive controller
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Figure 3.7: Profile of w̃i with adaptive controller
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Figure 3.8: Profile of state trajectories of six agents with unknown constant parameters

within interval [−100, 100]

performance of our control approach.
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Figure 3.9: Profile of ŵi and ˙̂wi with adaptive controller and unknown constant param-

eters within interval [−100, 100]
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4

Distributed Adaptive Consensus

of Multi-Agent Systems with

Linearly Parameterized

Dynamics

4.1 Introduction

This chapter studies a distributed adaptive scheme for consensus of nonlinear MASs

subject to uncertainties. As stated in Chapter 1, some results are available to deal

with consensus of nonlinear MASs with uncertainties. However, it is still challenging

to design distributed adaptive consensus control to achieve asymptotic consensus.

Recently, the adaptive control technique has been investigated to study consensus

problems for MASs with uncertainties. For instance, a first-order MAS was first studied

in [87] under an undirected communication graph, and a more general framework for a

group of continuous-time systems was considered in [88]. A similar adaptive technique

was used in [89] for both first and second-order MASs with a Nussbaum gain added to

deal with unknown control direction. The undirected fixed topology has been extended

to undirected jointly connected switching topology in [93] for leader-following case and

in [94] for leaderless case.

In the above schemes, although the adaptive law along the gradient of a Lyapunov

function is effective, it has the limitation that the technique cannot be generalized to
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handle second-order MASs with a directed graph. It essentially requires all the agent

states to construct a global Lyapunov function. This intrinsic methodology limitation

makes general distributed implementation difficult for tackling the consensus problem

for complicated MASs.

For a directed graph, the associated Laplacian matrix is asymmetric, which sig-

nificantly complicates the problem. Some relevant work for consensus of MASs with

uncertainties can be found in [97], which gave a result for higher-order MASs, but

for the leader-following case. Moreover, it is noted that consensus in [97] cannot be

achieved asymptotically but with a residual error. The work in [97] also considers NN

approximation for the unknown nonlinearities. The residual error is caused not only by

NN approximation errors, but also by the distributed implementation of the adaptive

law. In other words, residual consensus errors still exist even if the NN approximation

error is zero. The work in [97] includes the early results in [95, 96] as special cases.

Even though an adaptive law along the gradient of Lyapunov function using the

certainty equivalence principle has been proved to be successful in the aforementioned

scenarios, it does not work for MASs in general, as a Lyapunov function is usually

centrally constructed. In other words, distributed implementation of the gradient of

Lyapunov function is usually impractical except for limited cases. For instance, it still

remains open to design a distributed adaptive law to achieve asymptotic consensus for

a second-order MAS in a directed network. As will be explained in detail in the next

section, an adaptive law along the gradient of Lyapunov function has its inherent draw-

backs for solving this open problem due to the lack of its distributed implementation.

In this chapter, we propose a novel distributed adaptive scheme, not relying on

the gradient of Lyapunov function, for general nonlinear MASs with unknown constant

parameters. In the gradient based scheme, the estimation error is expected to have a

steady state zero. To drive the agent states together with the estimation error to their

steady states, the adaptive law must follow the gradient of Lyapunov function. The

novel idea is to introduce an input compensation such that the steady state of the esti-

mation error is not zero but a manifold in the state space of agent states and estimated

parameters. By proper selection of the manifold, it can be made attractive without

relying on the centrally designed Lyapunov function. At the manifold, the agent states

also approach their desired steady state. The idea in characterizing the steady-state
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manifold originates from the steady-state generator design in the output regulation the-

ory for dealing with asymptotic disturbance rejection and reference tracking [124, 125]

and immersion and invariance adaptive control of nonlinearly parameterized systems

[115]. Within the novel distributed adaptive scheme, the aforementioned open problem

on asymptotic consensus of a second-order nonlinear MAS in a directed network is

solved.

4.2 Preliminaries and Motivating Examples

Recall a MAS with a properly designed controller (3.1), described by

ẋi = fi(x), i = 1, · · · , n (4.1)

where xi ∈ R
l is the state of the i-th agent and x = [xT

1, x
T
2, · · · , xT

n]
T. Denote f(x) =

[fT
i (x1), f

T
2 (x2), · · · , fT

n(xn)]
T and the network has the compact form ẋ = f(x). This is

the nominal closed-loop MAS free of uncertainties. Suppose the MAS has achieved a

certain consensus behaviour, as described by a property in terms of a Lyapunov-like

function.

Assumption 4.2.1 For systems 4.1. There exists a continuously differentiable function

V (x) satisfying

α(‖x‖R) ≤ V (x) ≤ ᾱ(‖x‖R)

for a matrix R ∈ R
n̄l×nl with n̄ ≤ n and class K∞ functions α and ᾱ, such that,

∂V (x)

∂x
f(x) ≤ −α(‖x‖R) (4.2)

for a class K∞ function α. Moreover,

∥∥∥∂V (x)
∂x

∥∥∥2
α(‖x‖R) ≤ σ, (4.3)

for some positive constant σ.

Remark 4.2.1 Two typical scenarios of Assumption 4.2.1 are explained as follows.
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(i) If R ∈ R
nl×nl, i.e., n̄ = n, is a nonsingular matrix, then ‖x‖R = 0 implies ‖x‖ = 0.

In this scenario, the function V (x) is a Lyapunov function for the x-system and

Assumption 4.2.1 implies limt→∞ ‖x(t)‖ = 0, i.e., asymptotic stability about the

equilibrium at the origin.

(ii) If R ∈ R
(n−1)l×nl, i.e., n̄ = n − 1, is a full row rank matrix and the rows are

perpendicular to span{1 ⊗ Il} where Il ∈ R
l×l is an identity matrix and 1 =[

1 . . . 1
]T ∈ R

n, then ‖x‖R = 0 implies x = 1 ⊗ xo for some xo ∈ R
l. In

this scenario, the function V (x) is a Lyapunov function for the Rx-subsystem and

Assumption 4.2.1 implies limt→∞ ‖x(t)‖R = 0, i.e., limt→∞[x(t)− 1⊗ xo(t)] = 0,

which is a typical consensus phenomenon.

Now, we consider the network subject to uncertainties. The objective is to design an

adaptive scheme to deal with the uncertainties such that the behaviour of the nominal

system is still maintained. The design of an adaptive law is expected to be separated

from the consensus controller in the nominal system, which is not explicitly shown in

the closed-loop structure (4.1).

Specifically, the network of MAS subject to uncertainties is represented by

ẋi = fi(x) + gi(xi, wi, μi), i = 1, · · · , n (4.4)

where the nonlinear function gi(xi, wi, μi) ∈ R
l contains constant unknown parame-

ters wi and an additional adaptive control input μi to handle the uncertain nonlinear

dynamics Suppose the uncertainties have the linearly parameterized structure, i.e.,

gi(xi, wi, μi) = hi(xi)(wi − μi). (4.5)

We can rewrite the system in a compact form

ẋ = f(x) +H(x)(w − μ), (4.6)

where

w = [wT
1, w

T
2, · · · , wT

n]
T

μ = [μT
1, μ

T
2, · · · , μT

n]
T

H(x) = diag
[
h1(x1) h2(x2) · · · hn(xn)

]
.
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If the parameter wi were known, μi = wi could trivially cancel the uncertainties

gi(xi, wi, μi). For the practical case with an unknown wi, an adaptive law can be de-

signed along the gradient of the Lyapunov function V (x) as presented in Theorem 3.3.1.

However, the adaptive law (3.10) is not always distributed, as ∂V (x)/∂xi depends on

not only the local state of agent i, but also the full network state x unless V (x) can be

properly designed to have a distributed ∂V (x)/∂xi on a case by case basis. However,

it can be true only for very limited cases because the function V (x) for the nominal

system is constructed in a centralized manner. Two motivating examples are given as

follows.

Example 4.2.1 Consider a first-order integrator MAS in the network of an undirected

graph associated with a symmetric Laplacian L. The nominal network dynamics are

given as

ẋ = −Lx,

where x ∈ R
n. The Lyapunov function of closed-loop system is chosen to be

V (x) =
1

2
xTLx,

where L = RTR for a full row rank matrix R ∈ R
(n−1)×n when the graph is connected.

The time-derivative of V (x) along the trajectory of ẋ = −Lx is

V̇ (x) = −xTLLx

= −(Rx)T(RRT)(Rx)

≤ −rmin‖x‖2R,

where rmin > 0 is the minimal eigenvalue of RRT. When the network is subject to un-

certainties H(x)w, i.e., ẋ = −Lx+H(x)(w−μ), following Theorem 3.3.1, the additional

adaptive controller μ in (3.7) has the specific form

˙̂wi = λhT
i (xi)Lix

= λhT
i (xi)

∑
j∈Ni∪{i}

lijxj , λ > 0,

with Li the i-th row of L and Ni the set of neighbours of i. In this scenario, the

adaptive scheme is implemented in a distributed fashion. This development can be

found in, e.g., [94].
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The adaptive law (3.26) studied in Chapter 3 is another example showing that the

adaptive law (3.10) can be implemented in a distributed fashion as a special case.

Example 4.2.2 Consider a first-order integrator MAS ẋ = −Lx in the network of a

directed graph associated with a Laplacian matrix of the special form

L =

[
0 01×(n−1)

−b Lo +B

]
(4.7)

that represents a leader-following network with agent 1 as the leader. The matrix Lo

is the Laplacian of the sub-network of followers and B = diag(b), b = [b2, · · · , bn]T
with bi ≥ 0 the weight from the leader to agent i. Denote Lo = D − E where D =

diag(d2, · · · , dn) a diagonal matrix and E an off-diagonal one. Assume the network

has a spanning tree with the root node being the leader node 1. Then, there exists a

diagonal matrix P = diag(p2, · · · , pn) > 0 such that

2Q = P (Lo +B) + (Lo +B)TP > 0.

Let

R =
[
−b Lo +B

]
,

one has

RL = (Lo +B)R.

The time-derivative of Lyapunov function

V (x) =
1

2
xTRTPRx

along the trajectory of ẋ = −Lx is

V̇ (x) = −1

2
xTRT[P (Lo +B) + (Lo +B)TP ]Rx

≤ −xTRTQRx.

When the network is subject to uncertainties H(x)w, i.e., ẋ = −Lx + H(x)(w − μ),

along which the time-derivative of

U(x, w̃) = V (x) +
1

2λ
w̃Tw̃

is

U̇(x) ≤ −xTRTQRx+ [
1

λ
˙̂wT − xTRTPRH(x)]w̃.
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Following Theorem 3.3.1, the update law in (3.7) has the specific form

˙̂w = λHT(x)RTPRx. (4.8)

The update law (4.8) shows that not only is the information about neighbours

required to generate the update law, but also the information about the neighbour’s

neighbours. It means that the update law (4.8) cannot be implemented in distributed

fashion. In fact, a distributed adaptive law for this scenario still remains open.

For the scenario studied in [97], the leader is free of uncertainty, i.e., h1(x) = 0 and

w ∈ R
0 trivially. Then, one has

RH(x) = (Lo +B)diag
[
0 h2(x2) · · · hn(xn)

]
= (Lo +B)H̄(x)

= (D +B)H̄(x)− EH̄(x)

for H̄(x) =
[
0, diag

[
h2(x2) · · · hn(xn)

]]
. The following update law was applied

˙̂w = λH̄T(x)(D +B)PRx− λκŵ,

that gives

U̇(x) ≤ −xTRTQRx+ [−κŵT + xTRTPEH̄(x)]w̃

≤ [−xTRTQRx+ xTRTPEH̄(x)w̃ − κ‖w̃‖2]+ κ‖w‖‖w̃‖.

The update law is implemented in a distributed fashion by noting that the matrices

P,D and B are diagonal, that is,

˙̂wi = λ(di + bi)pih̄
T
i (x)Lix− λκŵi, , i = 2, · · · , n,

with Li the i-th row of L. In the expression of U̇(x), the terms in the square brackets

can be made negative with a sufficiently large κ but the positive term κ‖w‖‖w̃‖ causes

a residual consensus error. In other words, no asymptotic consensus can be achieved

using the approach developed in [97].

4.3 A Distributed Adaptive Scheme

The main contribution of our approach in this chapter is to bring a novel adaptive

scheme that can be implemented in a distributed fashion. For this purpose, let us have
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a close inspection of the approach in Theorem 3.3.1. For the system (4.4) with linearly

parameterized uncertainties, we introduce a virtual exosystem

τ̇i = fi(τ)

ẇi = 0, i = 1, · · · , n. (4.9)

The agent state xi and input μi are expected to have the steady states xi,ss = τi and

μi,ss = wi, respectively. In this sense, we call

ẇi = 0,

μi,ss = wi, i = 1, · · · , n

the steady-state generator for the input μi, which motivates the update law

˙̂wi = 0 +∇,

μi = ŵi, i = 1, · · · , n,

where ∇ is designed along the gradient of Lyapunov function such that the manifold

{(x, μ, τ, w) | xi = τi, μi = wi, i = 1, · · · , n} is attractive.

The novel idea is to introduce a function βi(xi) to the input, i.e., μi = −βi(xi)+ μ̂i.

Along the virtual exosystem (4.9), the agent state xi and input μ̂i are expected to have

the steady states xi,ss = τi and μ̂i,ss = θi(τi, wi) = βi(τi)+wi, respectively. As a result,

we have a steady-state generator for the input μ̂i

θ̇i(τi, wi) =
∂βi(τi)

∂τi
fi(τ)

μ̂i,ss = θi(τi, wi), i = 1, · · · , n,

that motivates the update law

˙̂wi =
∂βi(xi)

∂xi
fi(x)

μ̂i = ŵi, i = 1, · · · , n.

In this design, βi can be properly selected such that the manifold {(x, μ̂, τ, w) | xi =
τi, μ̂i = θi(τi, wi), i = 1, · · · , n} is attractive. The introduction of βi avoids the

implementation of ∇ that relies on a centrally designed Lyapunov function.

In this new development, if we treat ŵi as the estimated value of wi, the steady state

of the estimation error ŵi − wi is not zero but θi(τi, wi) − wi = βi(τi) where τi is the
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steady state of xi. Therefore, we aim to drive ŵi−wi to the manifold {(xi, ŵi) | ŵi−wi =

βi(xi), i = 1, · · · , n} in the space of agent states and estimated parameters. By proper

selection of the manifold, it can be made attractive and the agent state xi can approach

its desired steady state τi on the manifold. The rigorous formulation of the approach

is given in the following theorem.

Theorem 4.3.1 Consider the system (4.4) with (4.5) under Assumption 4.2.1. Let the

distributed controller be

μi = ŵi − βi(xi)

˙̂wi = −λih
T
i (xi)fi(x) (4.10)

where βi(xi) is any continuously differentiable function satisfying

∂βi(xi)

∂xi
= −λih

T
i (xi), (4.11)

for some λi > 0. Then the time-derivative of

U(x, z) = V (x) +
σ

4(1− k)

n∑
i=1

1

2λi
zT
i zi, (4.12)

with

zi = βi(xi)− w̃i, w̃i = ŵi − wi, (4.13)

satisfies

U̇(x, z) ≤ −kα(‖x‖R), (4.14)

for any 0 < k < 1, along the trajectory of the closed-loop system (4.4)+(4.5)+(4.10).

Proof: The system composed of (4.4)+(4.5)+(4.10) can be rewritten as

ẋi = fi(x) + hi(xi, wi)− hi(xi, ŵi − βi(xi))

= fi(x) + hi(xi, wi)− hi(xi, wi − zi).

Direct calculation shows

V̇ (x) =
∂V (x)

∂x
f(x) +

n∑
i=1

∂V (x)

∂xi
hi(xi)zi

≤ −α(‖x‖R) +
n∑

i=1

∂V (x)

∂xi
hi(xi)zi.
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For any 0 < k < 1, pick a = (1− k)/σ. One has

a

∥∥∥∥∂V (x)

∂x

∥∥∥∥
2

≤ (1− k)α(‖x‖R).

Moreover

V̇ (x) ≤ −α(‖x‖R) +
n∑

i=1

{
a

∥∥∥∥∂V (x)

∂xi

∥∥∥∥
2

+
1

4a
‖hi(xi)zi‖2

}

≤ −α(‖x‖R) + a

∥∥∥∥∂V (x)

∂x

∥∥∥∥
2

+

n∑
i=1

1

4a
‖hi(xi)zi‖2

≤ −kα(‖x‖R) +
n∑

i=1

1

4a
‖hi(xi)zi‖2.

Next, one has

żi =
∂βi(xi)

∂xi
ẋi − ˙̂wi

=
∂βi(xi)

∂xi
fi(x) +

∂βi(xi)

∂xi
hi(xi)zi − ∂βi(xi)

∂xi
fi(x)

=
∂βi(xi)

∂xi
hi(xi)zi

= −λih
T
i (xi)hi(xi)zi.

Then, the derivative of
1

2λi
zT
i zi

along the above trajectory is

d( 1
2λi

zT
i zi)

dt
= −zT

i h
T
i (xi)hi(xi)zi

= −‖hi(xi)zi‖2.

As a result, the derivative of

U(x, z) = V (x) +
1

4a

n∑
i=1

1

2λi
zT
i zi,

along the trajectory of the closed-loop system is

U̇(x, z) ≤ −kα(‖x‖R) +
n∑

i=1

1

4a
‖hi(xi)zi‖2 −

n∑
i=1

1

4a
‖hi(xi)zi‖2

≤ −kα(‖x‖R).

The proof is thus completed.
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Remark 4.3.1 In Theorem 4.3.1 the adaptive controller (4.10) is implemented at each

agent i. This scheme is distributed as it only relies on the agent state xi and its nominal

dynamics fi(x). The nominal dynamics fi(x) is implemented beforehand for the ideal

situation free of uncertainties, typically in distributed fashion. The effectiveness of

Theorem 4.3.1 will be demonstrated by a network of second-order uncertain dynamics

in the next section.

4.4 Application to A Network of Second-Order Uncertain

Dynamics

We consider a group of n ≥ 2 agents governed by a set of second-order nonlinear

differential equations

ṗi = vi

v̇i = α1pi + α2vi + ξi (wi, vi) + ui, i = 1, . . . , n, (4.15)

where pi, vi ∈ R are the states and ui ∈ R is the input of the agent i. The function

ξi(wi, vi) = ζi(vi)wi for a bounded function ζi(vi) represents heterogeneous nonlinear-

ities with wi an unknown constant parameter. The two parameters α1 and α2 are

known. For convenience of presentation, we denote

A =

[
0 1
α1 α2

]
, xi =

[
pi
vi

]

and

p =

⎡
⎢⎣

p1
...
pn

⎤
⎥⎦ , v =

⎡
⎢⎣

v1
...
vn

⎤
⎥⎦ , x =

⎡
⎢⎣

x1
...
xn

⎤
⎥⎦ , u =

⎡
⎢⎣

u1
...
un

⎤
⎥⎦ .

In this section, the network of MASs is given by a directed graph G = {V,E}, where
V = {1, · · · , n} is a finite non-empty set of nodes (i.e., agents) and E ⊂ V × V is the

set of edges (i.e., communication links). The adjacency matrix A = [aij ] of a weighted

directed graph is defined as aii = 0 (no self-loop) and aij > 0 if (j, i) ∈ E where i �= j.

The Laplacian L has elements of Lii =
∑

j �=i aij and Lij = −aij , where i �= j. For a

distributed algorithm, each agent i can achieve the information from the network as
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follows, with Li denoting the i-th row of L,

Lip = −
n∑

j=1

aij(pj − pi)

Liv = −
n∑

j=1

aij(vj − vi).

In this section, we study a general directed leaderless setting that includes the leader-

following case (with the Laplacian of the special form (4.7)) as a special case. Through-

out the section, we have the following assumption.

Assumption 4.4.1 The network has a directed spanning tree.

The objective is to design a distributed adaptive consensus protocol (i.e., only pi,

vi, Lip and Liv are available measurements for agent i) under which the MAS under

Assumption 4.4.1 has the following asymptotic property

lim
t→∞ p(t)− po(t)1 = 0

lim
t→∞ v(t)− vo(t)1 = 0 (4.16)

for some time functions po(t), vo(t) : [0,∞) 	→ R.

Under Assumption 4.4.1, the Laplacian L has one zero eigenvalue and the remaining

eigenvalues contain positive real parts. Let the vectors r ∈ R
n and 1 be the left and

right eigenvectors corresponding to the eigenvalue zero of L, in particular, rTL = 0,

L1 = 0, and rT1 = 1.

There exist matrices W ∈ R
(n−1)×n, U ∈ R

n×(n−1) such that

T =

[
rT

W

]
, T−1 =

[
1 U

]
.

One has the following similarity transformation

TLT−1 =

[
0 0
0 J

]

where J = WLU ∈ R
(n−1)×(n−1) is a matrix with all eigenvalues having positive real

parts. Define the matrix R as follows[
Wp
Wv

]
= Rx.
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It is easy to check that R has a full row rank and the rows of R are perpendicular to

span{1⊗ I2}.
We first have the following technical lemma.

Lemma 4.4.1 Under Assumption 4.4.1, there exist γ1, γ2 > 0 such that the matrix

Ā =

[
0 I

α1I − γ1J α2I − γ2J

]

is Hurwitz.

Proof: Under Assumption 4.4.1, all eigenvalues of J have positive real parts. Let

PJ ∈ R
(n−1)×(n−1) be the positive definite matrix such that

PJJ + JTPJ = I.

Let c be a positive constant such that

PJ < 2cI,

which, by Schur complement, implies

Q =

[ −I PJ − cI
PJ − cI −c2I

]
< 0. (4.17)

By choosing γ2 = cγ1 and a sufficiently large γ1 > 0, we will show Ā is Hurwitz. Denote

P =

[
γ1PJ PJ

PJ cPJ

]
,

which is positive definite if cγ1 > 1. Note that

PĀ+ ĀTP = γ1Q+Qc,

where

Qc =

[
2α1PJ (α2 + α1c)PJ

(α2 + α1c)PJ 2(1 + α2c)PJ

]

is a constant matrix. For a sufficiently large γ1, PĀ + ĀTP = γ1Q + Qc < 0 due to

(4.17). Therefore, Ā is Hurwitz.

The next lemma shows the consensus result for the ideal situation.
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Lemma 4.4.2 Under Assumption 4.4.1, consider the system (4.15) with ξi(wi, vi) = 0

and

ui = −γ1Lip− γ2Liv, (4.18)

where γ1 and γ2 are such that the matrix Ā =

[
0 I

α1I − γ1J α2I − γ2J

]
is Hurwitz.

Let P = P T > 0 be the solution to the Lyapunov equation

PĀ+ ĀTP = −I.

The function

V (x) = xTRTPRx (4.19)

satisfies Pmin‖x‖2R ≤ V (x) ≤ Pmax‖x‖2R (Pmin and Pmax are the minimum and maxi-

mum eigenvalues of P ) and its derivative along the closed-loop system is

V̇ (x) = −‖x‖2R.

Proof: The closed-loop system composed of (4.15) and (4.18) is

ṗi = vi

v̇i = α1pi + α2vi − γ1Lip− γ2Liv, i = 1, . . . , n, (4.20)

denoted as ẋi = fi(x). It can also be put in a compact form

ṗ = v

v̇ = α1p+ α2v − γ1Lp− γ2Lv. (4.21)

From the definition of T and T−1, one has

1rT + UW = I.

and

JW = WLUW

= WL(I − 1rT)

= WL.
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Using this fact, we have the following calculation

Rẋ =

[
Wṗ
Wv̇

]

=

[
Wv

α1Wp+ α2Wv − γ1WLp− γ2WLv

]

=

[
Wv

α1Wp+ α2Wv − γ1JWp− γ2JWv

]

=

[
0 I

α1I − γ1J α2I − γ2J

] [
Wp
Wv

]
= ĀRx.

As a result,

V̇ (x) = xTRTPRẋ+ ẋTRTPRx

= xTRT(PĀ+ ĀTP )Rx

= −‖x‖2R.

The proof is completed.

The main result on a distributed adaptive controller is stated in the following the-

orem that is proved by applying Theorem 4.3.1.

Theorem 4.4.1 Under Assumption 4.4.1, consider the system (4.15) with the controller

ui = −γ1Lip− γ2Liv − ζi(vi)μi, (4.22)

where γ1 and γ2 are given in Lemma 4.4.2,

μi = ŵi − ρi(vi)

˙̂wi = −λiζ
T
i (vi)[α1pi + α2vi − γ1Lip− γ2Liv], (4.23)

and ρi(vi) is any continuously differentiable function satisfying

∂ρi(vi)

∂vi
= −λiζ

T
i (vi), λi > 0. (4.24)

Then, consensus is achieved in the sense of (4.16) for some time functions po(t), vo(t) :

[0,∞) 	→ R.
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Proof: The closed-loop system composed of (4.15) and (4.22) is, for i = 1, . . . , n,

ṗi = vi

v̇i = α1pi + α2vi − γ1Lip− γ2Liv + ζi(vi)(wi − μi), (4.25)

or in a compact form (4.4), i.e.,

ẋi = fi(x) + hi(xi)(wi − μi),

where ẋi = fi(x) is given in (4.20) and

hi(xi) =

[
0

ζi(vi)

]
.

In Lemma 4.4.2, it has been proved that Assumption 4.2.1 is satisfied for ẋi = fi(x).

It is noted that ∥∥∥∂V (x)
∂x

∥∥∥2
‖x‖2R

=
‖2xTRTPR‖2

‖x‖2R
≤ 4‖PR‖2 < ∞. (4.26)

For (4.24) and βi(xi) = ρi(vi), one has (4.11). Also, (4.10) takes the special form

(4.23). By Theorem 4.3.1, one has

U̇(x, z) ≤ −k‖x‖2R (4.27)

for

U(x, z) = V (x) +
σ

4(1− k)

n∑
i=1

1

2λi
zT
i zi,

and zi = ρi(vi)− w̃i, w̃ = ŵ − w.

It is obvious to see that both ‖x(t)‖R and z(t) are bounded. Because of

Rẋ = ĀRx+RH(x)z,

‖ẋ(t)‖R is bounded and hence −k‖x(t)‖2R is uniformly continuous in t. By Barbalat’s

Lemma, one has limt→∞ ‖x(t)‖R = 0, that is,

lim
t→∞

[
Wp(t)
Wv(t)

]
= 0.

Let po(t) = rTp(t) and vo(t) = rTv(t). From the following relationship

p =
[
1 U

] [ rTp
Wp

]
= 1(rTp) + U(Wp),
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and

v =
[
1 U

] [ rTv
Wv

]
= 1(rTv) + U(Wv),

one has

lim
t→∞ p(t)− po(t)1 = U lim

t→∞Wp(t) = 0

lim
t→∞ v(t)− vo(t)1 = U lim

t→∞Wv(t) = 0.

The proof is thus completed.

Remark 4.4.1 The controller (4.22) consists of two components. The first component

is designed as (4.18) for the ideal case with ξi(wi, vi) = 0 to achieve consensus. When

the uncertainty ξi(wi, vi) is taken into account, an additional adaptive compensator

−ζi(vi)μi with the update law (4.23) is added to the controller. The critical advantage

of the approach based on Theorem 4.4.1 is that the aforementioned two components

can be designed separately.

4.5 Numerical Simulation

We consider a network of n = 6 agents described by

ṗi = vi

v̇i = −pi + ξi(wi, vi) + ui, i = 1, . . . , n. (4.28)

The nonlinear uncertain terms ξi (wi, vi)’s are given as follows

ξi(wi, vi) =

⎧⎪⎨
⎪⎩
wiv

3
i , i = 1, 2, 3

wi, i = 4, 5

wivi, i = 6

Assume all the unknown parameters are selected within the interval [−5, 5]. The

network topology is given in Fig. 4.1 with communication weights marked associated

with the edges.
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Figure 4.1: The network topology of six agents

From Fig. 4.1, we can generate the Laplacian matrix

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −2 0 0 0 0
0 3 −3 0 0 0
−3 0 3 0 0 0
0 0 −5 5 0 0
0 0 0 −4 9 −5
−1 0 −2 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.29)

In this section, we illustrate the performance of theoretical results developed with

several scenarios. The initial conditions are selected as follows

p(0) =
[
3 5 2 0 −5 −3

]T
v(0) =

[
5 1 −5 3 −2 −1

]T
,

and the unknown constant parameters are

w =
[
5 4 0.5 −0.5 −1 −5

]T
.

The states of MAS (4.28) are expected to achieve consensus on a sinusoidal trajec-

tory determined by the following nominal dynamics

ṗi = vi

v̇i = −pi.

In the first scenario, we demonstrate the simulation of MAS (4.28) with ui = 0. The

information from the network and agent states is unavailable for feedback control for

any agent. Consensus is not achieved under this situation, as illustrated in Fig. 4.2. We

can see that agent i moves from its initial position and velocity with unstable velocity.
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Figure 4.2: Profile of state trajectories of six agents without controller

The nominal behaviour of the agent i cannot be seen in this simulation, due to the

presence of nonlinear dynamics.

Now, MAS (4.15) is considered to be free of uncertainties i.e. ξi(wi, vi) = 0. By

Lemma 4.4.1, we can choose γ1 = 10 and γ2 = 5 such that Ā is Hurwitz. According

to Lemma 4.4.2, consensus with a collective nominal dynamics (4.30) is guaranteed to

be achieved under controller (4.18). Or, in other words, this situation represents MAS

under the ideal condition ẋ = f(x). The simulation results for this setting is plotted

in Fig. 4.3. We can see that both position and velocity of every agent converge to a

collective nominal behaviour i.e. sinusoidal trajectory.

When the uncertain nonlinearities ξi(wi, vi) exist in the closed-loop systems, then

an additional controller is required to be added in the control structure. The consensus

controller developed in Theorem 4.4.1 is proposed in this scenario. The design of the

controller (4.22) and (4.23) with ρi(vi) are specified as follows

ρi(vi) =

⎧⎪⎨
⎪⎩
−λiv

4
i /4, i = 1, 2, 3

−λivi, i = 4, 5

−λiv
2
i /2, i = 6

, (4.30)
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Figure 4.3: Profile of state trajectories of six agents under ideal situation

where λi = 0.01.

To illustrate the performance and the effectiveness of consensus control, we compare

the response of the closed-loop system with and without adaptive controller. Fig. 4.4

and 4.5 illustrate the profile of state trajectories of six agents to achieve consensus

without and with adaptive controller respectively. From the simulation results, we

can see that consensus cannot be achieved for MAS without adaptive controller. The

linear consensus protocol (4.18) is not enough to handle nonlinear dynamics. By adding

adaptive controller, the uncertain nonlinearities can be handled. The profile of ŵi and

˙̂wi are illustrated in Fig. 4.6. Different to traditional adaptive controller, wi doesn’t

converge to the actual value of wi, but to wi + ρi(vi) for deliberately designed ρi(vi).

The state of zi can be seen in Fig. 4.7. Asymptotic consensus is achieved as concluded

in Theorem 4.4.1.

In the last scenario, the range of unknown constant parameters is increased to be

within the interval [−50, 50]. In this simulation, wi is selected as follows

w =
[
50 40 5 −5 −10 −50

]T
.
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Figure 4.4: Profile of state trajectories of six agents without adaptive controller

Under the similar controller with the previous scenario, consensus still can be

achieved by maintaining a collective nominal behaviour of the agents. Fig. 4.8 shows

the profile of position and velocity consensus of six agents. Compared with the case

where there were unknown constant parameters within interval [−5, 5], the controller

now requires more time to achieve consensus. The profile of ŵi and ˙̂wi can be seen in

Fig 4.9. Similar to the previous scenario, ŵi is not driven to wi, but to wi + ρi(vi) for

deliberately designed ρi(vi). The profile of zi is plotted in Fig. 4.10.

Based on illustrated simulation results, we can verify that asymptotic consensus

can be achieved using our approach as concluded in Theorem 4.4.1. We also can see

the effectiveness of the proposed adaptive controller to handle uncertain nonlinearities.

4.6 Summary

In this chapter, we have presented a distributed adaptive scheme for a MAS that aims

to maintain its nominal collective behaviour subject to uncertain nonlinearities. The

main idea is to drive the estimation error to a deliberately designed manifold in the
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Figure 4.5: Profile of state trajectories of six agents with adaptive controller

space of agent states and estimated parameters, which provides significant advantages

in distributed implementation compared with the traditional adaptive law based on

gradient of a Lyapunov function. The effectiveness of the new scheme has been demon-

strated in solving an open asymptotic consensus problem for a second-order MAS in a

leaderless directed network.
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Figure 4.6: Profile of ŵi and ˙̂wi of six agents with adaptive controller
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Figure 4.7: Profile of zi of six agents with adaptive controller
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Figure 4.8: Profile of state trajectories of six agents with unknown constant parameters

within interval [−50, 50]
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ŵ6

time (s)

0 50 100 150

˙̂ w
i

-500

0

500

1000

1500

2000
˙̂w1

˙̂w2

˙̂w3

˙̂w4

˙̂w5

˙̂w6

Figure 4.9: Profile of ŵi and ˙̂wi of six agents with unknown constant parameters within

interval [−50, 50]
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Figure 4.10: Profile of zi of six agents with unknown constant parameters within interval

[−50, 50]
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5

Distributed Adaptive Consensus

of Multi-Agent Systems with

Nonlinearly Parameterized

Dynamics

5.1 Introduction

Handling nonlinearly parameterized uncertainties is always a difficult issue in adaptive

control even for a single system scenario. There are some existing results as follows.

The research based on convex/concave nonlinear functions is one of the major research

lines for adaptive control of nonlinearly parameterized models, see, e.g. [109, 110,

111, 112]. In [113], the adaptive control for nonlinearly parameterized systems was

proposed by exploiting the monotonicity property of nonlinear functions. In [115],

the so-called immersion and invariance adaptive control was proposed by constructing

a monotone mapping. An adaptive control method for the class of strict-feedback

nonlinearly parameterized systems was studied in [119] by introducing a biasing vector

function into parameter estimation. Another novel adaptive control approach based

on forward/backward adaptation law was established to achieve system stability and

parameter convergence in [116] that does not rely on the explicit expression of system

nonlinearities.

However, none of these results have been successfully applied in a networked setting.
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In this chapter, we extend the consensus framework in Chapter 4 to be more general,

where the dynamics of MASs contain nonlinearly parameterized uncertainties. This

is the first time to pursue a distributed adaptive consensus controller for nonlinearly

parameterized systems. The linear parameterization assumption will be removed by

a novel distributed adaptive update law, which makes the scheme applicable for more

general nonlinear MASs. In this scheme, the adaptive estimation error is driven to a

deliberately designed manifold in the space of agent states and estimated parameters.

The new adaptive scheme will be designed for more general nonlinearly parameterized

uncertainties. With this new scheme, we will be able to solve an open consensus problem

for a leaderless second-order MAS under a directed network.

The remainder of this chapter is organized as follows. We present the problem for-

mulation and some preliminary results in Section 5.2. In Section 5.3, a new distributed

adaptive scheme is proposed for MASs to maintain their nominal behaviour subject

to more general uncertain nonlinearities. An open problem of adaptive consensus for

second-order MAS is solved in Section 5.4. To illustrate the effectiveness of our design,

a numerical example is given in Section 5.5. Finally, the chapter is closed with some

concluding remarks in Section 5.6.

5.2 Problem Formulation and Preliminaries

Recall a MAS of n agents under properly designed controllers (3.1) represented by

ẋi = fi(x), i = 1, · · · , n (5.1)

where xi ∈ Rl is the state of the i-th agent and x = [xT
1, x

T
2, · · · , xT

n]
T. The dependence

of the function fi on x (not only xi) means the interconnection among agents. Let

f(x) = [fT
1 (x), f

T
2 (x), · · · , fT

n(x)]
T. Then, the nominal uncertainty-free MAS (5.1) can

be put in a compact form as ẋ = f(x). Suppose the MAS has achieved a certain

collective behaviour, specifically, with a property in terms of a Lyapunov-like function.

That is, Assumption 4.2.1 is satisfied. Two typical selections of R in Assumption 4.2.1

is described in Remark 4.2.1.

The research target is to propose an adaptive law in a superposition form on top of

the existing controller, such that the behaviour of the nominal system is still maintained

when the system is subject to uncertainties. Validity of such a superposition design
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is called the certainty equivalence principle. Specifically, the uncertainties and the

additional adaptive control are taken into the system (5.1) in the manner described by

ẋi = fi(x) + f δ
i (xi, wi, μi), i = 1, · · · , n (5.2)

where wi ∈ R
si denotes the unknown constant parameters and μi ∈ R

si the additional

adaptive control input to handle these uncertainties. It is assumed that μi = wi could

cancel the uncertainties if the parameter wi were known, that is,

f δ
i (xi, wi, μi) := gi(xi, wi)− gi(xi, μi)

for some function gi, throughout this chapter. In the practical scenario that wi is

unknown, an adaptive law is required for μi to dynamically cancel the uncertainties

associated with the parameter wi.

There are two major challenges in designing a distributed adaptive law in the present

networked setting. First, an adaptive law usually depends on the gradient of the estab-

lished Lyapunov function for the nominal system, which is V (x) in Assumption 4.2.1

for the present case. More specifically, the adaptive law depends on ∂V (x)/∂xi for

each agent i, which, hence, depends on not only the local state of agent i, but also the

full network state x. This is an obstacle for a distributed adaptive law. This challenge

has been overcome in Chapter 4 for the special case under the linearly parameterized

constraint, i.e.,

gi(xi, wi) = hi(xi)wi, gi(xi, μi) = hi(xi)μi (5.3)

for some function hi(xi). The main result is stated in Theorem 4.3.1.

The second challenge is to handle more general nonlinearly parameterized uncer-

tainties, which is always a difficult issue in adaptive control even for an individual

(non-networked) scenario. Together with the first challenge, the question is how to re-

move the linearly parameterized constraint (5.3) in Theorem 4.3.1. This is not a trivial

extension. Without the constraint (5.3), the function hi(xi) required for the adaptive

controller (4.10) does not exist. In the next section, we will find a strategy to con-

struct a suitable hi(xi) that plays the same role, but is capable of tackling nonlinearly

parameterized uncertainties.
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5.3 A Distributed Adaptive Scheme

The main result of this section is to give the explicit condition for hi(xi) and hence (4.10)

and (4.11) for nonlinearly parameterized systems such that Theorem 4.3.1 still holds

without the constraint (5.3). It is noted that for a linearly parameterized gi(xi, wi),

the following property holds for any vector zi of the same dimension of wi,

gi(xi, wi)− gi(xi, wi − zi) = gi(xi, zi) = hi(xi)zi, (5.4)

where

zi = βi(xi)− w̃i, w̃i = ŵi − wi. (5.5)

When gi(xi, wi) is nonlinearly parameterized, we will construct two functions hi(xi)

and τ̄i(zi) satisfying the following condition

[hi(xi)τ̄i(zi)− gi(xi, wi) + gi(xi, wi − zi)]
T

· [gi(xi, wi)− gi(xi, wi − zi)] ≥ 0, (5.6)

Remark 5.3.1 The condition (5.6) has two-fold meanings. On one hand, gi(xi, wi) −
gi(xi, wi−zi) represents the change direction of the function gi(xi, wi) along parameter

wi. The selection of hi(xi)τ̄i(zi) is along the change direction in the sense of

[hi(xi)τ̄i(zi)]
T · [gi(xi, wi)− gi(xi, wi − zi)] ≥ 0. (5.7)

On the other hand, hi(xi)τ̄i(zi) determines the boundary of gi(xi, wi) − gi(xi, wi − zi)

in the sense of

‖[hi(xi)τ̄i(zi)]T · [gi(xi, wi)− gi(xi, wi − zi)]‖
≥ ‖gi(xi, wi)− gi(xi, wi − zi)‖2 , (5.8)

that requires

‖hi(xi)τ̄i(zi)‖ · ‖gi(xi, wi)− gi(xi, wi − zi)‖ . (5.9)

It is easy to verify that (5.6) is equivalent to (5.7)+(5.8). For many classes of functions

gi, the two functions hi(xi) and τ̄i(zi) can be constructed to satisfy (5.7) and (5.8),

without knowing the exact value of wi. An example is given in Section 5.4.

The role of condition (5.6) will be seen in the main result summarized in the fol-

lowing theorem.
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Theorem 5.3.1 Consider the system (5.2) under Assumption 4.2.1. Suppose there exist

two functions hi(xi) and �i(·) > 0 and a continuously differentiable positive definite

function Wi(zi) such that (5.6) holds for

τ̄i(zi) = �i(Wi(zi))(
∂Wi(zi)

∂zi
)T. (5.10)

Let the distributed adaptive controller be

μi = ŵi − βi(xi)

˙̂wi = −λih
T
i (xi)fi(x) (5.11)

where βi(xi) is any continuously differentiable function satisfying

∂βi(xi)

∂xi
= −λih

T
i (xi), (5.12)

for some λi > 0. Then, the derivative of

U(x, z) = V (x) +
σ

4(1− k)

n∑
i=1

∫ Wi(zi)

0

�i(s)

λi
ds (5.13)

with (5.5) and z = [zT
1 , z

T
2 , · · · , zT

n]
T satisfies

U̇(x, z) ≤ −kα(‖x‖R), (5.14)

for any 0 < k < 1, along the trajectory of the closed-loop system (5.2)+(5.11).

Proof: We can rewrite the closed-loop system composed of (5.2) and (5.11) as

follows, noting μi = wi − zi,

ẋi = fi(x) + gi(xi, wi)− gi(xi, wi − zi). (5.15)

By direct calculation, we have the time-derivative of the function V (x), along the

trajectory of (5.15), as follows

V̇ (x) =
∂V (x)

∂x
f(x) +

n∑
i=1

∂V (x)

∂xi
(gi(xi, wi)− gi(xi, wi − zi))

≤ −α(‖x‖R) +
n∑

i=1

∂V (x)

∂xi
(gi(xi, wi)− gi(xi, wi − zi)) .

For any 0 < k < 1, pick a = (1− k)/σ. Then,

a

∥∥∥∥∂V (x)

∂x

∥∥∥∥
2

≤ (1− k)α(‖x‖R). (5.16)
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Furthermore,

V̇ (x) ≤ −α(‖x‖R) +
n∑

i=1

a

∥∥∥∥∂V (x)

∂xi

∥∥∥∥
2

+
1

4a

n∑
i=1

‖gi(xi, wi)− gi(xi, wi − zi)‖2

≤ −α(‖x‖R) + a

∥∥∥∥∂V (x)

∂x

∥∥∥∥
2

+
1

4a

n∑
i=1

‖gi(xi, wi)− gi(xi, wi − zi)‖2

≤ −kα(‖x‖R) + 1

4a

n∑
i=1

‖gi(xi, wi)− gi(xi, wi − zi)‖2 .

Next, noting that

˙̂wi =
∂βi(xi)

∂xi
fi(x), (5.17)

the dynamics of zi can be written as

żi =
∂βi(xi)

∂xi
ẋi − ˙̂wi

=
∂βi(xi)

∂xi
(fi(x) + gi(xi, wi)− gi(xi, wi − zi))− ∂βi(xi)

∂xi
fi (x)

=
∂βi(xi)

∂xi
(gi(xi, wi)− gi(xi, wi − zi)) . (5.18)

Therefore, we can verify that the time-derivative of Wi(zi), along the trajectory of the

aforementioned zi-dynamics, satisfies

Ẇi(zi) =
∂Wi(zi)

∂zi

∂βi(xi)

∂xi
(gi(xi, wi)− gi(xi, wi − zi)) . (5.19)

From above, the time-derivative of U(x, z), along the trajectory of the closed-loop
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system, is

U̇(x, z) ≤− kα(‖x‖R) + 1

4a

n∑
i=1

‖gi(xi, wi)− gi(xi, wi − zi)‖2

+
1

4a

n∑
i=1

�i(Wi(zi))
∂Wi(zi)

∂zi

∂βi(xi)

∂xi

· (gi(xi, wi)− gi(xi, wi − zi)) /λi

≤− kα(‖x‖R) + 1

4a

n∑
i=1

‖gi(xi, wi)− gi(xi, wi − zi)‖2

− 1

4a

n∑
i=1

τ̄T
i (zi)h

T
i (xi) (gi(xi, wi)− gi(xi, wi − zi))

≤− kα(‖x‖R) (5.20)

due to (5.6). The proof is thus completed.

Remark 5.3.2 With the constraint (5.3), the condition (5.6) automatically holds for

�i(·) = 1, Wi(zi) = zT
i zi/2, and τ̄i(zi) = zi. Then, the function U(x, z) in (5.13) reduces

to that in (4.12), and hence Theorem 5.3.1 to Theorem 4.3.1. In other words, there

is no additional conservativeness applied on Theorem 5.3.1, compared with its special

version Theorem 4.3.1.

Remark 5.3.3 When the function gi(xi, wi) is a general nonlinear function, it is not

difficult to find two functions hi(xi) and τ̄i(zi) to satisfy (5.6). However, it should be

noted that the existence of βi(xi) satisfying (5.12) is not always guaranteed for every

hi(xi). In other words, it is challenging to find a suitable hi(xi) for both (5.12) and

(5.6) simultaneously. The solution will be found on a case-by-case basis.

Remark 5.3.4 The adaptive controller (5.11) in Theorem 5.3.1 is applied to every agent

i. This distributed control protocol only relies on the local agent state xi and its

nominal dynamics fi(x). The MAS with the nominal dynamics fi(x) is implemented

in distributed fashion beforehand, when the nonlinear function gi(xi, wi) has not been

taken into consideration.
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5.4 Application to A Network of Second-Order Uncertain

Dynamics

In this section, we study adaptive consensus for a second-order MAS using the scheme

in Theorem 5.3.1. Consider n ≥ 2 autonomous agents governed by the set of equations

ṗi = vi

v̇i = α1pi + α2vi + ξi(vi, wi) + ui, i = 1, . . . , n, (5.21)

where pi, vi ∈ R are the states, the constants α1,α2 ∈ R are the known parameters and

ui ∈ R is the control input of agent i and ξi(vi, wi) is a bounded nonlinear function

with unknown constant parameter wi. For convenience of presentation, we define

A =

[
0 1
α1 α2

]
, xi =

[
pi
vi

]

and

p =

⎡
⎢⎣

p1
...
pn

⎤
⎥⎦ , v =

⎡
⎢⎣

v1
...
vn

⎤
⎥⎦ , x =

⎡
⎢⎣

x1
...
xn

⎤
⎥⎦ , u =

⎡
⎢⎣

u1
...
un

⎤
⎥⎦ . (5.22)

In this section, the network topology is represented by a graph G = {V,E}. A finite

non-empty set of nodes is denoted by V = {1, 2, · · · , n} and the set of directed edges is

presented by E ⊂ V×V. Let A = [aij ] denote the adjacency matrix where aij > 0 if the

edge (j, i) ∈ E, i �= j, aij = 0 if i = j. So, there exists no self-loop. Define the Laplacian

matrix as L = [Lij ] that has elements of Lij = −aij , j �= i and Lii =
∑n

j=1,j �=1 aij . Let

Li be the i-th row of L, then the distributed information from the network to the agent

i can be written as

Lip = −
n∑

j=1

aij(pj − pi)

Liv = −
n∑

j=1

aij(vj − vi).

In this section, we investigate a general directed leaderless MAS with the following

assumption.
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Assumption 5.4.1 The network topology contains at least a directed spanning tree.

Under Assumption 5.4.1, the Laplacian matrix L has one zero eigenvalue and all

the remaining eigenvalues are with positive real parts. Let r ∈ R
n and 1 be the left

and right eigenvectors corresponding to the eigenvalue 0. We have rTL = 0, L1 = 0,

and rT1 = 1. There exist matrices W ∈ R
(n−1)×n, U ∈ R

n×(n−1) such that

T =

[
rT

W

]
, T−1 =

[
1 U

]
. (5.23)

Then, the Laplacian matrix L can be transformed into

TLT−1 =

[
0 0
0 J

]
, (5.24)

where J = WLU ∈ R
(n−1)×(n−1) is the matrix with positive eigenvalues of L on the

diagonal. Let us define the matrix R as follows[
Wp
Wv

]
= Rx (5.25)

where R has a full row rank and the rows of R are perpendicular to span {1⊗ I2}.
There are two technical lemmas regarding the property of the nominal system (5.21)

with ξi(vi, wi) = 0.

In this chapter, we will use two technical Lemmas, i.e. Lemma 4.4.1 and 4.4.2

presented in Chapter 4. According to Lemma 4.4.1, by selecting sufficiently large γ1

and γ2 = cγ1 > 1 with c > 0, then the matrix

Ā =

[
0 I

α1I − γ1J α2I − γ2J

]

is Hurwitz. From Lemma 4.4.2, we can conclude that MAS (5.21) with ξi(vi, wi) = 0

under Assumption 5.4.1 achieves consensus under the following control protocol

ui = −γ1Lip− γ2Liv, (5.26)

where γ1 and γ2 are properly selected such that the matrix Ā is Hurwitz.

Now, the main result on a distributed adaptive controller for the MAS (5.21) is

stated in the following theorem.
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Theorem 5.4.1 Consider the MAS (5.21) under Assumption 5.4.1. Suppose there exist

two functions �i(vi) and �i(·) > 0 such that, with τ̄i(ςi) = �i(ς
2
i /2)ςi,

[�i(vi)τ̄i(ςi)− ξi(vi, wi) + ξi(vi, wi − ςi)]
T

· [ξi(vi, wi)− ξi(vi, wi − ςi)] ≥ 0. (5.27)

Let the controller be

ui = −γ1Lip− γ2Liv − ξi(vi, μi) (5.28)

and

μi = ŵi − ρi(vi)

˙̂wi = −λi�
T
i (vi)[α1pi + α2vi − γ1Lip− γ2Liv], (5.29)

where γ1 and γ2 are selected according to Lemma 4.4.2 and ρi(vi) is a continuously

differentiable function satisfying

∂ρi(vi)

∂vi
= −λi�

T
i (vi) (5.30)

for some λi > 0. Then, the closed-loop system (5.21)+(5.28)+(5.29) achieves consen-

sus in the sense of

lim
t→∞ pi(t)− po(t) =0

lim
t→∞ vi(t)− vo(t) =0 (5.31)

for some functions po(t), vo(t) : [0,∞) 	→ R.

Proof: First of all, the system composed of (5.21) and (5.28) can be written as

follows,

ṗi =vi

v̇i =α1pi + α2vi − γ1Lip− γ2Liv + ξi(vi, wi)− ξi(vi, μi), i = 1, · · · , n.

It can also be put in the following compact form,

ẋi = fi(x) + gi(xi, wi)− gi(xi, μi) (5.32)

where the nominal dynamics ẋi = fi(x) is given by

ṗi = vi

v̇i = α1pi + α2vi − γ1Lip− γ2Liv, i = 1, · · · , n (5.33)
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and

gi(xi, wi) =

[
0

ξi(vi, wi)

]

gi(xi, μi) =

[
0

ξi(vi, μi)

]
. (5.34)

The system (5.32) takes the form (5.2). Applying Lemma 4.4.2 verifies Assump-

tion 4.2.1 for ẋi = fi(x). Furthermore, we can verify that

∥∥∥∂V (x)
∂x

∥∥∥2
‖x‖2R

=
‖2xTRTPR‖2

‖x‖2R
≤ 4‖PR‖2 < ∞. (5.35)

By Theorem 5.3.1 with ςi = ρi(vi) − ŵi + wi, h(xi) = �i(vi), τ̄i(zi) = τ̄i(ςi), βi(xi) =

ρi(vi), and

U(x, ς) = V (x) +
σ

4(1− k)

n∑
i=1

∫ ς2i /2

0

�i(s)

λi
ds, (5.36)

one has

U̇(x, ς) ≤ −k‖x‖2R. (5.37)

It is noted that U(x(t), ς(t)) and hence ‖x(t)‖R are bounded. Because of

Rẋ = ĀRx+R(g(x,w)− g(x,w − ς)),

with w = [wT
1, · · · , wT

n]
T, ς = [ςT1 , · · · , ςTn]T, and g(x,w) = [gT

1(x1, w1), · · · , gT
n(xn, wn)]

T,

‖ẋ(t)‖R is bounded and hence −k‖x(t)‖2R is uniformly continuous in t. Also, a finite

limit

lim
t→∞

∫ t

0
−k‖x(t)‖2R ≥ lim

t→∞

∫ t

0
U̇(x(t), ς(t)) ≥ −U(x(0), ς(0))

exists. By Barbalat’s Lemma, one has limt→∞ ‖x(t)‖R = 0, that is,

lim
t→∞

[
Wp(t)
Wv(t)

]
= 0. (5.38)

Let po(t) = rTp(t) and vo(t) = rTv(t). From the following relationships

p =
[
1 U

] [ rTp
Wp

]
= 1(rTp) + U(Wp)
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and

v =
[
1 U

] [ rTv
Wv

]
= 1(rTv) + U(Wv)

one has

lim
t→∞ p(t)− po(t)1 = U lim

t→∞Wp(t) = 0

lim
t→∞ v(t)− vo(t)1 = U lim

t→∞Wv(t) = 0.

This completes the proof.

Remark 5.4.1 If parameter wi in (5.21) were known, the following controller

ui = −γ1Lip− γ2Liv − ξi(vi, wi) (5.39)

could be designed to achieve consensus by directly cancelling ξi(vi, wi) in (5.21). In

the practical case, with wi unknown, the real controller takes the form (5.28), which

is equivalent to (5.39) with wi replaced by its estimation μi. Also, the estimation

is determined by the adaptive law (5.29). The design approach in Theorem 5.4.1

constitutes the certainty equivalence principle.

Remark 5.4.2 The distributed adaptive control protocol (5.28) is composed of two

parts. The first part is the controller (5.26) proposed to achieve consensus for the ideal

case when the nonlinear function ξi(vi, wi) vanishes. The second part is the adaptive

controller (5.29). This additional controller is added when nonlinear function with

uncertainty ξi(vi, wi) is taken into account. These two parts can be designed separately

as stated in Theorem 5.4.1, which constitutes the certainty equivalence principle.

5.5 Numerical Simulation

We consider the following six-agent systems

ṗi =vi

v̇i =− pi + ξi (vi, wi) + ui, i = 1, . . . , 6. (5.40)
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The nonlinear functions ξi(vi, wi) are given as follows

ξi(vi, wi) =

{
tanh(wiv

2
i ), i = 1, 2, 3, 4

vi tanh(wiv
2
i ), i = 5, 6,

(5.41)

and the unknown constant parameters wi are selected within interval [−1, 1]. The

communication network for the MAS (5.40) has a fixed topology, as shown in Fig. 5.1.

In particular, the Laplacian matrix L of the network in Fig. 5.1 is represented by

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
0 1 −1 0 0 0
−1 0 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 2 −1
−1 0 −1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.42)

Figure 5.1: The network topology of the MAS

In this section, we demonstrate the performance of the proposed controller with

several scenarios. In this simulation, we select the initial conditions

p(0) =
[
1 2 1.5 0 −2 −1.5

]T
v(0) =

[
2 1 −2 1.5 −2 −1

]T
,

and the unknown constant parameters

w =
[
1 0.8 0.6 −1 −0.2 −0.3

]T
.

First, the simulation is performed for MAS (5.40) without control input i.e. ui = 0.

Under this condition, the relative position and velocity as well as the agent states are

unavailable for feedback control for any agent. Consensus is not achieved under this sit-

uation as plotted in Fig. 5.2. We can see that each agent moves from its initial position

and velocity according to its own nominal dynamics and nonlinear uncertainties.
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Figure 5.2: Profile of state trajectories of six agents without controller

In the second scenario, the uncertain nonlinearities in MAS (5.40) are considered

vanishing i.e. ξi(wi, vi) = 0. By Lemma 4.4.1, we can select γ1 = 5 and γ2 = 5,

therefore Ā is Hurwitz. According to Lemma 4.4.2, consensus with a collective nominal

dynamics (5.40) is guaranteed to be achieved under controller (5.26). This represents

MAS under ideal condition ẋ = f(x). It is observed in Fig. 5.3 that the states of

the six agents achieve consensus on a sinusoidal trajectory determined by the nominal

dynamics

ṗi = vi

v̇i = −pi. (5.43)

In the second scenario, we consider that the uncertain nonlinearities ξi(wi, vi) exist

in the closed-loop systems. An additional controller is needed to be added in the

control structure to maintain nonlinearities. We propose the distributed consensus

control (5.28) to handle this situation.
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Figure 5.3: Profile of state trajectories of six agents under ideal situation

Pick the function �i(vi) as follows,

�i(vi) =

{
v2i + 1, i = 1, 2, 3, 4

v3i + vi, i = 5, 6
. (5.44)

First, we consider the agents i = 1, 2, 3, 4. For ςi ≥ 0, one has

�i(vi)ςi ≥ ςiv
2
i ≥ tanh(wiv

2
i )− tanh((wi − ςi)v

2
i ) ≥ 0 (5.45)

and hence [
�i(vi)ςi − tanh(wiv

2
i ) + tanh((wi − ςi)v

2
i )
]

· [tanh(wiv
2
i )− tanh((wi − ςi)v

2
i )
] ≥ 0, (5.46)

which verifies (5.27) with �i(·) = 1. For ςi ≤ 0, a similar argument follows. Next, we

consider the agents i = 5, 6. For viςi ≥ 0, one has

�i(vi)ςi ≥ ςiv
3
i ≥ vi tanh(wiv

2
i )− vi tanh((wi − ςi)v

2
i ) ≥ 0

and hence [
�i(vi)ςi − vi tanh(wiv

2
i ) + vi tanh((wi − ςi)v

2
i )
]

· [vi tanh(wiv
2
i )− vi tanh((wi − ςi)v

2
i )
] ≥ 0, (5.47)
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which verifies (5.27) with �i(·) = 1. For viςi ≤ 0, a similar argument follows.

Now, we pick the function ρi(vi), satisfying (5.30) with λi = 1, as follows

ρi(vi) =

{
−1

3v
3
i − vi, i = 1, 2, 3, 4

−1
4v

4
i − 1

2v
2
i , i = 5, 6

. (5.48)

As a result, the controller (5.28)+(5.29) can be explicitly constructed and Theorem 5.4.1

guarantees the achievement of consensus.

We compare the response of the closed-loop system with and without the adaptive

controller to see the effectiveness of the proposed consensus control. The closed-loop

system without adaptive controller is illustrated in Fig. 5.4. We can see that the states

of six agents cannot achieve consensus with linear consensus control (5.26). Fig. 5.5

illustrates the profile of position and velocity of six agents to achieve consensus with

adaptive controller. By adding adaptive law, the uncertain nonlinearities can be han-

dled. The profile of ŵi and ˙̂wi are plotted in Fig. 5.6. Different to traditional adaptive

controller, the state of ŵi converges, not to the real value of wi as in traditional adap-

tive control, but to wi+ρi(vi) for a deliberately designed ρi(vi). For i = 1, 2, 3, 4, ρi(vi)

contains vi and v3i , so ŵi demonstrates the fundamental frequency 1 rad/s of vi at the

steady state. For i = 5, 6, ρi(vi) contains v
2
i and v4i , so ŵi demonstrates the fundamen-

tal frequency 2 rad/s of v2i . The profile of zi can be seen in Fig. 5.7. This simulation

results show that asymptotic consensus is achieved as concluded in Theorem 5.4.1.

In the last scenario, the range of unknown constant parameters is increased to be

within interval [−50, 50]. In this simulation, wi is selected as follows

w =
[
10 8 6 −10 −2 −3

]T
.

Under a similar controller as the previous scenario, consensus still can be achieved

by maintaining a collective nominal behaviour. Fig. 5.8 shows the profile of position

and velocity consensus of six agents. Compared with the case where unknown constant

parameters are within the interval [−1, 1], the controller now requires more time to

achieve consensus. The profile of ŵi and ˙̂wi can be seen in Fig 5.9. Similar to the

previous scenario, ŵi is not driven to wi, but to wi + ρi(vi) for deliberately designed

ρi(vi). The profile of zi is plotted in Fig. 5.10.

Based on simulation results, we can verify that asymptotic consensus can be achieved

using our approach as concluded in Theorem 5.4.1. We also can see the effectiveness

of the proposed adaptive controller to handle uncertain nonlinearities.
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Figure 5.4: Profile of state trajectories of six agents without adaptive controller

5.6 Summary

In this chapter, we have presented a distributed adaptive consensus protocol for a MAS

with uncertain nonlinearities to maintain the system’s nominal collective behaviour. In

this scheme, the adaptive estimation error is driven to a deliberately designed manifold

in the space of agent states and estimated parameters. The new adaptive scheme is

effective for general nonlinearly parameterized systems. To demonstrate the effective-

ness, we have solved an open consensus problem for a leaderless second-order MAS

with a directed network. It will be interesting to apply the proposed adaptive scheme

for more collective control scenarios in future research.
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Figure 5.5: Profile of state trajectories of six agents with adaptive controller

time (s)
0 5 10 15 20 25 30 35 40 45 50

ŵ
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Figure 5.6: Profile of ŵi and ˙̂wi of six agents with adaptive controller
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Figure 5.7: Profile of zi of six agents with adaptive controller
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Figure 5.8: Profile of state trajectories of six agents with unknown constant parameters

within interval [−10, 10]
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ŵ2
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Figure 5.9: Profile of ŵi and ˙̂wi of six agents with unknown constant parameters within

interval [−10, 10]
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6

Conclusion

6.1 Summary

In this thesis, our focus is to establish a distributed adaptive consensus framework for

MASs subject to uncertainties. The framework can be applied for general MASs, not

limited to first and second-order systems. The main results of the thesis are presented

in Chapter 3, 4 and 5. Some theorems and lemmas with rigorous proofs have also been

presented. To illustrate the performance of the proposed controllers, we have provided

some numerical examples and simulations.

Consensus controllers are developed for both MASs with linear and nonlinear dy-

namics. The proposed consensus controller contains two main components. The first

is a linear control protocol designed to achieve consensus with a collective nominal

behaviour when the MAS is free of uncertainties. The second component is an addi-

tional adaptive compensator added in the control structure when uncertain dynamics

are taken into account. The critical advantage of the proposed controller is that both

components can be designed separately. The main objective is to drive all agents to

achieve consensus such that the behaviour of the nominal system is still maintained.

Firstly, the introduction and research motivation to study MASs have been pre-

sented in Chapter 1. Following that, still in the same chapter, we introduce the research

motivation to adaptive control. An overview of the consensus strategies for MASs with

various settings such as MASs with linear dynamics, nonlinear dynamics, communica-

tion constraints and so on has been presented in the literature review section. From

there, we formulate relevant research problems for consensus of MASs. Some prelim-
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inary knowledge and useful information about algebraic graph theory and adaptive

control have been presented in Chapter 2.

The main results of the thesis begin in Chapter 3. A centralized adaptive scheme

for a MAS that aims to maintain its nominal collective behaviour subject to uncertain

nonlinearities is established in this chapter. Traditional adaptive control constituted

by the certainty equivalence principle is proposed to handle uncertain dynamics. In

adaptive control, the Lyapunov function is usually centrally constructed. Consequently,

the global information about the network is required in designing adaptive law.

The adaptive scheme in Chapter 3 has some inherent drawbacks in designing dis-

tributed adaptive consensus control. The full network states as well as the local states

are required to generate the adaptive law. The proposed approach can be implemented

in a distribution fashion only for limited cases. In Chapter 4, a distributed adaptive

framework is proposed for MASs subject to uncertainties. Asymptotic consensus is

achieved. In this method, the estimation parameters are not driven to the actual value

of unknown constant parameters, but to a deliberately designed manifold in the space

of agent states and estimated parameters. An application is provided for second-order

MASs with a fixed directed topology.

The proposed controller in Chapter 4 is under an essential assumption, where the

uncertain nonlinear dynamics is in the class of linearly parameterized models. In Chap-

ter 5, a general distributed adaptive framework for MASs subject to nonlinearly pa-

rameterized models is developed. We have proposed a novel distributed adaptive law

to remove linearly parameterization assumption. Similar to the adaptive technique in

Chapter 4, the estimation error converges to a deliberately designed manifold in the

space of agent states and estimated parameters. An application to solve the leaderless

consensus problem for second-order MASs with a directed network is also presented as

a case study.

6.2 Outlook

In future work, it will be interesting to apply the proposed adaptive scheme to more

complex control scenarios, especially for MASs with communication constraints such

as time delays and switching topologies.
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6.2 Outlook

In real applications, time delays may be unavoidable. It will be interesting to

extend our distributed adaptive scheme for MASs with time delays. Existing studies

have produced results for general MASs with linear dynamics. The key issue is to

generalize our adaptive law to handle nonlinearities with time delays. Firstly, this

work can be started for linearly parameterized MASs. Once this consensus problem

can be solved, an extension to the nonlinearly parameterized MAS can be proposed.

Consensus analysis is more difficult in this situation, but the technical approach in this

thesis can be generalized.

The network topology of MASs may not always be under a fixed topology. The

interconnection between each agent may change over time due to hardware limitations

and any possible external factors. Therefore, the existing control protocol under a fixed

topology cannot be applied to handle this situation. In future work, it will be neces-

sary to extend our proposed controller to nonlinear MASs with switching topologies,

especially under jointly connected topologies.

There are two major problems for generalizing our approach with similar settings

but with jointly connected topologies. The first problem is to design linear consensus

control for systems with ideal situation. In our setting, the collective nominal behaviour

of MASs is not always stable or marginally stable forms. Handling this situation is not

trivial. Some results have been obtained in [93, 94] for MASs with jointly connected

topologies, but for first-order systems. The consensus problem is more simple for first-

order MASs because the velocity of unconnected agents are zero; as a result, the error

position of nodes will not increase. However, the problem is more complicated for

second-order systems. The velocity of unconnected agents is not zero, consequently the

consensus error will increase. Some results have been obtained in [126, 127, 128] by

considering velocity measurement in consensus control design. Under this situation, the

switched systems consist of marginally stable subsystems. It means that the difficulty

of designing a control protocol for a switched system with unstable subsystems was

avoided. Another approach to maintain this situation is dynamic controller. This

approach was proposed in [50, 129] without avoiding unstable subsystems in a switched

system. Handling distributed static consensus for non-first-order nonlinear MASs with

jointly connected topologies is challenging. Designing static consensus control contains

self-contribution in the research of MASs.
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6. CONCLUSION

The second problem is to generalize our adaptive approach for the switching sys-

tems. The adaptive control design is more complicated as it cannot be separated from

linear control protocols. It will be interesting to extend the technical approach taken

in this thesis to handle this situation.

6.3 Publications

The results of this thesis are based on a published article and a submitted article in

specialized journals, and an accepted conference paper. The details are as below

• Journal Papers

[130] Imil Hamda Imran, Zhiyong Chen, Yamin Yan, and Minyue Fu. Adaptive

consensus of nonlinearly parameterized multi-agent systems. IEEE Control Sys-

tems Letters, 3(3):505-510, 2019. DOI: 10.1109/LCSYS.2019.2911688

[131] Imil Hamda Imran, Zhiyong Chen, Lijun Zhu, and Minyue Fu. A distributed

adaptive scheme for multi-agent systems. Asian Journal of Control (Submitted).

https://arxiv.org/pdf/1904.11137.pdf

• Conference Paper

[132] Imil Hamda Imran, Zhiyong Chen, Yamin Yan, and Minyue Fu. Adaptive

consensus of nonlinearly parameterized multi-agent systems. IEEE Conference

on Decision and Control 2019 (Accepted).
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[90] W. Yu, G. Chen, and J. Lü. On pinning synchronization of complex

dynamical networks. Automatica, 45(2):429–435, 2009.

[91] Wenlian Lu, Xiang Li, and Zhihai Rong. Global stabilization of com-

plex networks with digraph topologies via a local pinning algorithm.

Automatica, 46(1):116–121, 2010.

[92] Zeng-Guang Hou, Long Cheng, and Min Tan. Decentralized robust

adaptive control for the multiagent system consensus problem using

neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics), 39(3):636–647, 2009.

[93] H. Yu and X Xia. Adaptive consensus of multi-agents in networks with

jointly connected topologies. Automatica, 48(8):1783–1790, 2012.

[94] H. Yu and X Xia. Adaptive leaderless consensus of agents in jointly

connected networks. Neurocomputing, 241:64–70, 2017.

[95] A. Das and F. Lewis. Distributed adaptive control for synchronization

of unknown nonlinear networked systems. Automatica, 46(12):2014–2021,

2010.

[96] A. Das and F. Lewis. Cooperative adaptive control for synchroniza-

tion of second-order systems with unknown nonlinearites. International

Journal of Robust and Nonlinear Control, 21(13):1509–1524, 2011.

[97] H. Zhang and F. Lewis. Adaptive cooperative tracking control of

higher-order nonlinear systems with unknown dynamics. Automatica,

48:1432–1439, 2012.

103



BIBLIOGRAPHY

[98] Kumpati S Narendra and Anuradha M Annaswamy. Stable adaptive sys-

tems. Prentice Hall: Englewood Cliffs. NJ, 1989.

[99] Kumpati S Narendra and Anuradha M Annaswamy. Stable adaptive sys-

tems. Courier Corporation, 2012.

[100] Petros A Ioannou and Jing Sun. Robust adaptive control. Prentice-Hall

Upper Saddle River, NJ, 1996.

[101] Chengyu Cao and Naira Hovakimyan. L1 adaptive controller for multi-

input multi-output systems in the presence of unmatched disturbances.

In American Control Conference, 2008, pages 4105–4110. IEEE, 2008.

[102] Cao Chengyu and Naira Hovakimyan. Design and analysis of a novel L1

adaptive control architecture with guaranteed transient performance.

IEEE Transactions on Automatic Control, 53(2):586–591, 2008.

[103] Chengyu Cao and Naira Hovakimyan. L1 adaptive controller for a class

of systems with unknown nonlinearities: Part I. In American Control

Conference, 2008, pages 4093–4098. IEEE, 2008.

[104] Chengyu Cao and Naira Hovakimyan. Stability margins of L1 adaptive

control architecture. IEEE Transactions on Automatic Control, 55(2):480–

487, 2010.

[105] Enric Xargay, Naira Hovakimyan, and Chengyu Cao. L1 adaptive con-

troller for multi-input multi-output systems in the presence of nonlin-

ear unmatched uncertainties. In American Control Conference (ACC), 2010,

pages 874–879. IEEE, 2010.

[106] Naira Hovakimyan and Chengyu Cao. L1 adaptive control theory: guar-

anteed robustness with fast adaptation, 21. SIAM-Society for Industrial and

Applied Mathematics, 2010.

[107] Jovan D Boskovic. Stable adaptive control of a class of first-order

nonlinearly parameterized plants. IEEE Transactions on Automatic Control,

40(2):347–350, 1995.

104



BIBLIOGRAPHY

[108] Jovan D Boskovic. Adaptive control of a class of nonlinearly parame-

terized plants. IEEE Transactions on Automatic Control, 43(7):930–934, 1998.

[109] Romeo Ortega. Some remarks on adaptive neuro-fuzzy systems. In In-

telligent Control, 1995., Proceedings of the 1995 IEEE International Symposium

on, pages 411–414. IEEE, 1995.

[110] Anuradha M Annaswamy, Fredrik P Skantze, and Ai-Poh Loh.

Adaptive control of continuous time systems with convex/concave

parametrization. Automatica, 34(1):33–49, 1998.

[111] MS Netto, AM Annaswamy, R Ortega, and P Moya. Adaptive control

of a class of non-linearly parametrized systems using convexification.

International Journal of Control, 73(14):1312–1321, 2000.

[112] I Yu Tyukin, Danil V Prokhorov, and Valery A Terekhov. Adaptive

control with nonconvex parameterization. IEEE transactions on automatic

control, 48(4):554–567, 2003.

[113] Ivan Yu Tyukin, Danil V Prokhorov, and Cees van Leeuwen. Adap-

tation and parameter estimation in systems with unstable target dy-

namics and nonlinear parameterization. IEEE Transactions on Automatic

Control, 52(9):1543–1559, 2007.

[114] Xiangbin Liu, R Ortega, Hongye Su, and Jian Chu. Immersion and in-

variance adaptive control of nonlinearly parameterized nonlinear sys-

tems. In American Control Conference, 2009.

[115] Xiangbin Liu, Romeo Ortega, Hongye Su, and Jian Chu. Immersion

and invariance adaptive control of nonlinearly parameterized nonlinear

systems. IEEE Transactions on Automatic Control, 55(9):2209–2214, 2010.

[116] Zhiyong Chen. A novel adaptive control approach for nonlinearly pa-

rameterized systems. International Journal of Adaptive Control and Signal

Processing, 29(1):81–98, 2015.

105



BIBLIOGRAPHY

[117] Zhihua Qu. Adaptive and robust controls of uncertain systems with

nonlinear parameterization. IEEE Transactions on Automatic Control,

48(10):1817–1824, 2003.

[118] Mingxuan Sun and Shuzhi Sam Ge. Adaptive repetitive control for a

class of nonlinearly parametrized systems. IEEE Transactions on Auto-

matic Control, 51(10):1684–1688, 2006.

[119] Zhihua Qu, Richard A Hull, and Jing Wang. Globally stabilizing adap-

tive control design for nonlinearly-parameterized systems. IEEE Trans-

actions on Automatic Control, 51(6):1073–1079, 2006.

[120] Hugang Han, Chun-Yi Su, and Yury Stepanenko. Adaptive control

of a class of nonlinear systems with nonlinearly parameterized fuzzy

approximators. IEEE Transactions on Fuzzy Systems, 9(2):315–323, 2001.

[121] Jing Wang. Robust adaptive control of a class of nonlinearly parame-

terized time-varying uncertain systems. In American Control Conference,

2009. ACC’09., pages 1940–1945. IEEE, 2009.
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